Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138011

ABSTRACT

Biodegradable and biocompatible copolymers have been often studied for the development of biomaterials for drug delivery systems. In this context, this work reports the synthesis and characterization of a novel pullulan-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Pull-g-PHBHV) graft copolymer using click chemistry. Well-defined and functional pullulan backbones containing azide groups (PullN3) previously prepared by our group were successfully used for this purpose and propargyl-terminated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was prepared via transesterification using propargyl alcohol as a chain transfer agent. By an alkyne-azide cycloaddition reaction catalyzed by copper (Cu (I)) (CuAAC), the graft copolymer Pull-g-PHBHV was obtained. The chemical structures of the polymers were accessed by 1H NMR and 13C NMR FTIR. Disappearance of the bands referring to the main bonds evidenced success in the grafting reaction. Besides that, DRX, DSC and TGA were used in order to access the changes in crystallinity and thermal behavior of the material. The remaining crystallinity of the Pull-g-PHBHV structure evidences the presence of PHBHV. Pull-g-PHBHV presented lower degradation maximum temperature values than the starting materials, indicating its minor thermal stability. Finally, the synthesized material is an innovative biopolymer, which has never been reported in the previous literature. It is a bio-derived and biodegradable polymer, chemically modified, resulting in interesting properties which can be useful for their further applications as biomedical systems for controlled delivery, for example.

SELECTION OF CITATIONS
SEARCH DETAIL
...