Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Diabetol ; 22(1): 294, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891673

ABSTRACT

BACKGROUND: The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS: To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS: Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION: CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Proto-Oncogene Proteins c-akt , Animals , Mice , Adenosine Triphosphate/metabolism , Diabetes Mellitus/metabolism , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Energy Metabolism , Insulin/pharmacology , Mice, Transgenic , Mitochondria, Heart/metabolism , Myocardium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
2.
Kidney Int ; 99(4): 870-884, 2021 04.
Article in English | MEDLINE | ID: mdl-33316281

ABSTRACT

Kidney tubular dysfunction contributes to acute kidney injury and to the transition to chronic kidney disease. Although tubular mitochondria have been implicated in the pathophysiology of kidney failure, the mechanisms are not yet clear. Here, we demonstrated that ischemia-reperfusion injury induced acute translocation and activation of mitochondrial protein kinase B (also known as AKT1) in the kidney tubules. We hypothesized that mitochondrial AKT1 signaling protects against the development of acute kidney injury and subsequent chronic kidney disease. To test this prediction, we generated two novel kidney tubule-specific transgenic mouse strains with inducible expression of mitochondria-targeted dominant negative AKT1 or constitutively active AKT1, using a Cre-Lox strategy. Inhibition of mitochondrial AKT1 in mitochondria-targeted dominant negative AKT1 mice aggravated azotemia, tubular injuries, kidney fibrosis, glomerulosclerosis, and negatively impacted survival after ischemia-reperfusion injury. Conversely, enhancing tubular mitochondrial AKT1 signaling in mitochondria-targeted constitutively active AKT1 mice attenuated kidney injuries, protected kidney function, and significantly improved survival after ischemia-reperfusion injury (76.9% vs. 20.8%, respectively). Uncoupled mitochondrial respiration and increased oxidative stress was found in the kidney tubules when mitochondria AKT1 was inhibited, supporting the role of mitochondrial dysfunction in the pathophysiology of kidney failure. Thus, our studies suggest tubular mitochondrial AKT1 signaling could be a novel target to develop new strategies for better prevention and treatment of kidney injury.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Animals , Apoptosis , Kidney/metabolism , Mice , Mice, Inbred C57BL , Mitochondria , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/metabolism
3.
Appl Environ Microbiol ; 85(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31492670

ABSTRACT

Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by ß-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and specific for detecting known attractants, and the ß-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate.IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.


Subject(s)
Bacterial Proteins/genetics , Chemotaxis/genetics , Escherichia coli/genetics , Pseudomonas putida/genetics , Signal Transduction , Escherichia coli Proteins/genetics , Gene Expression , Genome, Bacterial , Methyl-Accepting Chemotaxis Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...