Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 384: 129315, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37321309

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is a prominent bio-plastic and recognized as the potential replacement of petroleum-derived plastics. To make PHB cost-effective, the production scheme based on crude glycerol was developed using Escherichia coli. The heterogeneous synthesis pathway of PHB was introduced into the E. coli strain capable of efficiently utilizing glycerol. The central metabolism that links to the synthesis of acetyl-CoA and NADPH was further reprogrammed to improve the PHB production. Key genes were targeted for manipulation, involving those in glycolysis, the pentose phosphate pathway, and the tricarboxylic cycle. As a result, the engineered strain gained a 22-fold increase in the PHB titer. Finally, the fed-batch fermentation was conducted with the producer strain to give the PHB titer, content, and productivity reaching 36.3 ± 3.0 g/L, 66.5 ± 2.8%, and 1.2 ± 0.1 g/L/h, respectively. The PHB yield on crude glycerol accounts for 0.3 g/g. The result indicates that the technology platform as developed is promising for the production of bio-plastics.


Subject(s)
Escherichia coli , Glycerol , 3-Hydroxybutyric Acid/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycerol/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Plastics/metabolism
2.
Bioresour Technol ; 346: 126596, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953990

ABSTRACT

This study reviews the recent advances and innovations in the application of additives to improve biomethane and biohydrogen production. Biochar, nanostructured materials, novel biopolymers, zeolites, and clays are described in terms of chemical composition, properties and impact on anaerobic digestion, dark fermentation, and photofermentation. These additives can have both a simple physical effect of microbial adhesion and growth, and a more complex biochemical impact on the regulation of key parameters for CH4 and H2 production: in this study, these effects in different experimental conditions are reviewed and described. The considered parameters include pH, volatile fatty acids (VFA), C:N ratio, and NH3; additionally, the global impact on the total production yield of biogas and bioH2 is reviewed. A special focus is given to NH3, due to its strong inhibition effect towards methanogens, and its contribution to digestate quality, leaching, and emissions into the atmosphere.


Subject(s)
Biofuels , Fatty Acids, Volatile , Fermentation , Hydrogen/analysis , Methane
3.
Bioresour Technol ; 317: 123986, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32799083

ABSTRACT

Research of single-stage anaerobic biohythane production is still in an infant stage. A single-stage dark fermentation system using separately-entrapped H2- and CH4-producing microbes was operated to produce biohythane at hydraulic retention times (HRTs) of 48, 36, 24, 12 and 6 h. Peak biohythane production was obtained at HRT 12 h with H2 and CH4 production rates of 3.16 and 4.25 L/L-d, respectively. At steady-state conditions, H2 content in biohythane and COD removal efficiency were in ranges of 7.3-84.6 % and 70.4-77.9%, respectively. During the fermentation, the microbial community structure of the entrapped H2-producing microbes was HRT-independent whereas entrapped CH4-producing microbes changed at HRTs 12 and 6 h. Caproiciproducens and Methanobacterium were the dominant genera for producing H2 and CH4, respectively. The novelty of this work is to develop a single-stage biohythane production system using entrapped anaerobic microbes which requires fewer controls than two-stage systems.


Subject(s)
Methane , Microbiota , Anaerobiosis , Bioreactors , Fermentation , Hydrogen
4.
Bioresour Technol ; 300: 122702, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31918294

ABSTRACT

This study demonstrates the continuous biohythane production in a single-stage anaerobic digester using a biomass mixture of separately entrapped hydrogenic and methanogenic bacteria (H2- and CH4-producing bacteria, respectively). The entrapped hydrogenic/methanogenic bacteria biomass ratios of 1/4, 2/3, 3/2 and 4/1 were tested and shown to have a great effect on the single-stage biohythane production performance. At steady-states, the cultivations had biohythane production rates in the range of 381-480 mL/L-d, with H2 content in biohythane (HCH) varying from 1% to 75% (v/v) and chemical oxygen demand removal efficiencies (TCODre) of 57.6-81.9%. Biomass ratio 2/3 (weight ratio 1/1.5) resulted in peak biohythane production with H2 and CH4 production rates being 64.6 and 395 mL/L-d, respectively, HCH 15% and TCODre 74.4%. The novelty of this work is to show the potential of producing biohythane from an innovative single-stage dark fermentation system using entrapped hydrogenic and methanogenic bacteria.


Subject(s)
Hydrogen , Methane , Anaerobiosis , Bacteria , Bacteria, Anaerobic , Bioreactors , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...