Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 307: 122527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518591

ABSTRACT

Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Hydrogen Peroxide , Silver/pharmacology , Silver/chemistry , Staphylococcus aureus
2.
J Phys Chem C Nanomater Interfaces ; 127(40): 20183-20193, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37850082

ABSTRACT

Cerium dioxide (CeO2; ceria) nanoparticles (CeNPs) are promising nanozymes that show a variety of biological activity. Effective nanozymes need to retain their activity in the face of surface speciation in biological environments, and characterizing surface speciation is therefore critical to understanding and controlling the therapeutic capabilities of CeNPs. In particular, adsorbed phosphates can impact the enzymatic activity exploited to convert phosphate prodrugs into therapeutics in vivo and also define the early stages of the phosphate-scavenging processes that lead to the transformation of active CeO2 into inactive CePO4. In this work, we utilize ab initio lattice-dynamics calculations to study the interaction of phosphates with the three major surfaces of ceria and to predict the infrared (IR) and Raman spectral signatures of adsorbed phosphate species. We find that phosphates adsorb strongly to CeO2 surfaces in a range of stable binding configurations, of which 5-fold coordinated P species in a trigonal bipyramidal coordination may represent a stable intermediate in the early stages of phosphate scavenging. We find that the phosphate species show characteristic spectral fingerprints between 500 and 1500 cm-1, whereas the bare CeO2 surfaces show no active modes above 600 cm-1, and the 5-fold coordinated P species in particular show potential diagnostic P-O stretching modes between 650 and 700 cm-1 in both IR and Raman spectra. This comprehensive exploration of different binding modes for phosphates on CeO2 and the set of reference spectra provides an important step toward the experimental characterization of phosphate speciation and, ultimately, control of its impact on the performance of ceria nanozymes.

3.
Bioact Mater ; 21: 547-565, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36185749

ABSTRACT

The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...