Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447918

ABSTRACT

Temperature sensors, such as Fiber Bragg Grating (FBG) and thermocouple (TC), have been widely used for monitoring the interstitial tissue temperature during laser irradiation. The aim of the current study was to compare the performance of both FBG and TC in real-time temperature monitoring during endoscopic and circumferential laser treatment on tubular tissue structure. A 600-µm core-diameter diffusing applicator was employed to deliver 980-nm laser light (30 W for 90 s) circumferentially for quantitative evaluation. The tip of the TC was covered with a white tube (W-TC) in order to prevent direct light absorption and to minimize temperature overestimation. The temperature measurements in air demonstrated that the measurement difference in the temperature elevations was around 3.5 °C between FBG and W-TC. Ex vivo porcine liver tests confirmed that the measurement difference became lower (less than 1 °C). Ex vivo porcine esophageal tissue using a balloon-integrated catheter exhibited that both FBG and W-TC consistently showed a comparable trend of temperature measurements during laser irradiation (~2 °C). The current study demonstrated that the white tube-covered TC could be a feasible sensor to monitor interstitial tissue temperature with minimal overestimation during endoscopic laser irradiation. Further in vivo studies on gastroesophageal reflux disease will investigate the performance of the W-TC to monitor the temperature of the esophageal mucosa surface in real-time mode to warrant the safety of endoscopic laser treatment.


Subject(s)
Hyperthermia, Induced , Swine , Animals , Temperature , Lasers , Light , Optical Fibers
SELECTION OF CITATIONS
SEARCH DETAIL
...