Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(41): 48478-48491, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34633791

ABSTRACT

Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an in vitro 3D co-culture model in a microwell 3D (µ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME). The modular setup is used to characterize the paracrine signaling molecules and the role of the intraspheroidal collagen network in cancer drug resistance. The µ-well 3D platform is made up of poly(dimethylsiloxane) that contains 630 round wells for individual spheroid growth. Inside each well, the growth surface measured 500 µm in diameter and was functionalized with the amphiphilic copolymer. HCT-8 colon cancer cells and/or NIH3T3 fibroblasts were seeded in each well and incubated for up to 9 days for TME studies. It was observed that NIH3T3 cells promoted the kinetics of tumor organoid formation. The two types of cells self-organized into core-shell chimeric tumor spheroids (CTSs) with fibroblasts confined to the shell and cancer cells localized to the core. Confocal microscopy analysis indicated that a type-I collagen network developed inside the CTS along with increased TGF-ß1 and α-SMA proteins. The results were correlated with a significantly increased stiffness in 3D co-cultured CTS up to 52 kPa as compared to two-dimensional (2D) co-culture. CTS was more resistant to 5-FU (IC50 = 14.0 ± 3.9 µM) and Regorafenib (IC50 = 49.8 ± 9.9 µM) compared to cells grown under the 2D condition 5-FU (IC50 = 12.2 ± 3.7 µM) and Regorafenib (IC50 = 5.9 ± 1.9 µM). Targeted collagen homeostasis with Sclerotiorin led to damaged collagen structure and disrupted the type-I collagen network within CTS. Such a treatment significantly sensitized collagen-supported CTS to 5-FU (IC50 = 4.4 ± 1.3 µM) and to Regorafenib (IC50 = 0.5 ± 0.2 µM). In summary, the efficient formation of colon cancer CTSs in a µ-well 3D culture platform allows exploration of the desmoplastic TME. The novel role of intratumor collagen quality as a drug sensitization target warrants further investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Spheroids, Cellular/metabolism , Tumor Microenvironment/physiology , Animals , Benzopyrans/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Coculture Techniques/methods , Collagen Type I/antagonists & inhibitors , Collagen Type I/metabolism , Colorectal Neoplasms/metabolism , Fluorouracil/pharmacology , Humans , Mice , NIH 3T3 Cells , Phenylurea Compounds/pharmacology , Poloxamer/chemistry , Pyridines/pharmacology , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment/drug effects
2.
J Med Chem ; 64(19): 14513-14525, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34558909

ABSTRACT

Autophagy is upregulated in response to metabolic stress, a hypoxic tumor microenvironment, and therapeutic stress in various cancers and mediates tumor progression and resistance to cancer therapy. Herein, we identified a cinchona alkaloid derivative containing urea (C1), which exhibited potential cytotoxicity and inhibited autophagy in hepatocellular carcinoma (HCC) cells. We showed that C1 not only induced apoptosis but also blocked autophagy in HCC cells, as indicated by the increased expression of LC3-II and p62, inhibition of autophagosome-lysosome fusion, and suppression of the Akt/mTOR/S6k pathway in the HCC cells. Finally, to improve its solubility and efficacy, we encapsulated C1 into PEGylated lipid-poly(lactic-co-glycolic acid) (PLGA) nanoscale drug carriers. Systemic administration of nanoscale C1 significantly suppressed primary tumor growth and prevented distant metastasis while maintaining a desirable safety profile. Our findings demonstrate that C1 combines autophagy modulation and apoptosis induction in a single molecule, making it a promising therapeutic option for HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Cinchona Alkaloids/pharmacology , Liver Neoplasms/pathology , Urea/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Tumor Microenvironment/drug effects
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753481

ABSTRACT

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti-PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Receptors, CXCR4/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Diethylnitrosamine/administration & dosage , Diethylnitrosamine/toxicity , Drug Synergism , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/immunology , Liver Neoplasms, Experimental/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Molecular Docking Simulation , Rats , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Sorafenib/pharmacology , Sorafenib/therapeutic use , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...