Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(9): e2303485, 2024 04.
Article in English | MEDLINE | ID: mdl-38150609

ABSTRACT

The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Carbon , Muscle Cells , Printing, Three-Dimensional
2.
Nano Lett ; 21(8): 3690-3697, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33724848

ABSTRACT

The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.


Subject(s)
Graphite , Hydrogels , Electric Conductivity , Porosity
3.
ACS Appl Mater Interfaces ; 11(5): 5325-5335, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30600988

ABSTRACT

Carbon-based fibrous scaffolds are highly attractive for all biomaterial applications that require electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here, we show a novel modular design strategy to engineer biomimetic carbon fiber-based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as three-dimensional (3D) sacrificial templates and are infiltrated with carbon nanotubes (CNTs) or graphene dispersions. Once the CNTs and graphene coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition. The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the microfibrous scaffolds were tailored with a high porosity (up to 93%), a high Young's modulus (ca. 0.027-22 MPa), and an electrical conductivity of ca. 0.1-330 S/m, as well as different surface compositions. Cell viability, fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ± 6.95 mg/cm3) so that they are able to resemble the extracellular matrix not only structurally but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells, showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon fiber systems that mimic the extracellular matrix with the additional feature of conductivity.

4.
ACS Biomater Sci Eng ; 5(9): 4393-4404, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33438405

ABSTRACT

The coating of porous scaffolds with nanoparticles is crucial in many applications, for example to generate scaffolds for catalysis or to make scaffolds bioactive. A standard and well-established method for coating surfaces with charged nanoparticles is electrophoresis, but when used on porous scaffolds, this method often leads to a blockage of the pores so that only the outermost layers of the scaffolds are coated. In this study, the electrophoretic coating process is monitored in situ and the kinetics of nanoparticle deposition are investigated. This concept can be extended to design a periodic electrophoretic deposition (PEPD) strategy, thus avoiding the typical blockage of surface pores. In the present work we demonstrate successful and homogeneous electrophoretic deposition of hydroxyapatite nanoparticles (HAn, diameter ≤200 nm) on a fibrous graphitic 3D structure (ultralightweight aerographite) using the PEPD strategy. The microfilaments of the resulting scaffold are covered with HAn both internally and on the surface. Furthermore, protein adsorption assays and cell proliferation assays were carried out and revealed that the HAn-decorated aerographite scaffolds are biocompatible. The HAn decoration of the scaffolds also significantly increases the alkaline phosphatase activity of osteoblast cells, showing that the scaffolds are able to promote their osteoblastic activity.

5.
ACS Appl Mater Interfaces ; 10(50): 43874-43886, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30395704

ABSTRACT

Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.


Subject(s)
Bone Regeneration , Cell Proliferation , Nanotubes, Carbon/chemistry , Osteoblasts/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Line , Mice , Osteoblasts/cytology , Rats
6.
ACS Appl Mater Interfaces ; 8(24): 14980-5, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27258400

ABSTRACT

Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days.


Subject(s)
Graphite/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Cell Adhesion , Cells, Cultured , Phospholipids/chemistry , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL
...