Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 104(7): 4391-4399, 2024 May.
Article in English | MEDLINE | ID: mdl-38323805

ABSTRACT

BACKGROUND: The shortcomings of synthetic pesticides are becoming increasingly evident. In the pursuit of looking for alternative, environmentally friendly pesticides, the potential use of two naturally occurring sesquiterpenes, α-bisabolol and bisabolol oxide A, as bactericides or acaricides, was investigated against three gram-positive and three gram-negative bacteria, and the eggs and larvae of the cattle tick Hyalomma scupense, respectively. The primary targeted site of synthetic insecticides is acetylcholinesterase (AChE), so the inhibitory activity of both sesquiterpenes was evaluated. Then, molecular docking and molecular mechanics generalized Born surface area (MM-GBSA) studies were performed to gain insight into their binding mode in the AChE active site. RESULTS: Bisabolol oxide A showed good activity against Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis with inhibition zones ranging from 16 to 34 mm and minimal inhibitory concentration (CIM) of 3.125 mg mL-1. Ovicidal and larvicidal assays revealed promising activity of α-bisabolol and bisabolol oxide A against H. scupense, with bisabolol oxide A being more effective against larval ticks with lethal concentration (LC50) value of 0.78%. Both compounds also displayed potent anti-AChE activity with inhibition concentration (IC50) values of 37.09 and 28.14 µg mL-1, respectively. Furthermore, α-bisabolol and bisabolol oxide A exhibited good and comparable docking scores (-7.289 and -7.139 Kcal mol-1, respectively) and were found to accommodate in the active-site gorge of AChE via hydrogen bonding and hydrophobic interactions. CONCLUSION: Bisabolol oxide A and, to a lesser degree, α-bisabolol are active against bacteria and ectoparasites and may represent an economical and sustainable alternative to toxic synthetic pesticides to control pathogens. © 2024 Society of Chemical Industry.


Subject(s)
Insecticides , Monocyclic Sesquiterpenes , Sesquiterpenes , Molecular Docking Simulation , Acetylcholinesterase/metabolism , Sesquiterpenes/pharmacology , Insecticides/pharmacology , Oxides
2.
Environ Sci Pollut Res Int ; 30(4): 10789-10802, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36083364

ABSTRACT

To ensure the success of phytoremediation, it is important to consider the appropriate combination of plants and microorganisms. This study was conducted to get a better insight into the underlying molecular and biochemical mechanism of grass pea (Lathyrus sativus L.) induced by plant growth promoting rhizobacteria (PGPR), when exposed for 3, 6, 9, and 14 days to 1 mM Pb in a hydroponic system. The significant positive effect of bacterial inoculation was reproduced in various parameters. Results indicated that inoculation of PGPR significantly increased the accumulation of Pb by 20%, 66%, 43%, and 36% in roots and by 46%, 55%, 37%, and 46% in shoots, respectively after 3, 6, 9, and 14 days of metal exposure compared to the uninoculated plants. The metal accumulation in grass pea plants triggered a significant elevation in the synthesis of non-protein thiols (NPT), particularly in inoculated plant leaves where it was about 3 and 2-fold higher than the uninoculated set on the 6th and the 9th day. Nevertheless, Pb treatment significantly increased oxidative stress and membrane damage in leaves with the highest hydrogen peroxide (H2O2) production and tissue malondialdehyde (MDA) concentration recorded in uninoculated plants. Furthermore, the PGPR inoculation alleviated the oxidative stress, improved significantly plant tolerance, and modulated the activities of antioxidant enzymes (SOD, CAT, APX, GR, DHAR, and MDHAR). Similarly, the expression patterns of LsPCS, LsGCN, LsCNGC, LsGR, and LsGST through qRT-PCR demonstrated that bacterial inoculation significantly induced gene expression levels in leaves 6 days after Pb treatment, indicating that PGPR act as regulators of stress-responsive genes. The findings suggest the key role of PGPR (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) in enhancing Pb accumulation, reducing metal toxicity, strengthening of the antioxidant system, and conferring higher Pb tolerance to grass pea plants. Hence, the association Lathyrus sativus-PGPR is an effective tool to achieve the goal of remediation of Pb contaminated sites.


Subject(s)
Alphaproteobacteria , Soil Pollutants , Antioxidants/metabolism , Lead , Pisum sativum , Hydrogen Peroxide/metabolism , Oxidative Stress , Plant Roots/metabolism , Alphaproteobacteria/metabolism , Soil Pollutants/analysis
3.
Ecotoxicol Environ Saf ; 192: 110260, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32050135

ABSTRACT

Rehabilitation of heavy metals contaminated soils using association between legumes and beneficial rhizospheric microorganisms such as plant growth-promoting bacteria (PGPR) is a major challenge in agronomy. The present study focuses on assessing the impact of field inoculation with I1 (Rhizobium leguminosarum (M5) + Bacillus simplex + Luteibacter sp. + Variovorax sp.) and I5 (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) on growth and phytoremediation potential of Lathyrus sativus plants as well as soil quality and fertility. The experimentation was carried out in mine tailings of northern Tunisia. Obtained Results indicated that the in situ inoculation with I1 and I5 significantly increased the shoots (47% and 22%) and roots dry weights (22% and 29%), as well as nodules number (48% and 31%), respectively, compared to uninoculated plants. The maximum Pb accumulation in the above-ground tissue was recorded in plants inoculated with I5 (1180.85 mg kg-1 DW). At the same time, we noticed a reduction in total Pb and Cd in the rhizosphere of inoculated plots mainly in those inoculated with I5 reaching 46% and 61%, respectively, compared to uninoculated plots. Likewise, I5 inoculum significantly enhanced soil total nitrogen (35%) and available phosphorus (100%), as well as ß-glucosidase (16%), urease (32%) and alkaline phosphatase (12%) activities. Here we demonstrate the usefulness of L. sativus inoculated with I5 inoculum formed by mixing efficient and heavy metals resistant PGPR to boost an efficient reclamation of Cd and Pb contaminated soils and, ultimately, to improve their quality and fertility.


Subject(s)
Cadmium/metabolism , Lathyrus/metabolism , Lead/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Lathyrus/growth & development , Lathyrus/microbiology , Plant Roots/growth & development , Rhizosphere , Soil/chemistry
4.
Food Res Int ; 112: 425-433, 2018 10.
Article in English | MEDLINE | ID: mdl-30131154

ABSTRACT

The virgin olive oils (VOOs) under examination were from the main Tunisian cultivar 'Chemlali'. Olive fruits used for oil production were stored in plastic containers for four weeks at ambient temperature. Hydrophilic bioactive compounds and volatile profiles of the corresponding oils were analyzed. Chemometric analysis showed that VOO obtained from fruits stored during one week is similar to that of freshly harvested fruits. They preserved their bioactive and volatile molecular markers of freshness with the predominance of the secoiridoid aldehydic form of oleuropeine aglycon, and the C6 lipoxygenase products. However, VOO obtained from fruits stored for a long time, showed degradation of the derivatives of oleuropeine and ligstroside aglycons, a decrease in the lignan, and flavonoid groups, whereas phenolic acids showed a remarkable increase. The volatile profile was characterized by a decrease in the LOX products, and biosynthesis of the volatile molecular markers of oxidation C7-C10 aldehydes (nonanal, decanal, (Z) and (E)-2-heptenal, (E)-2-octenal, and (E,E)-2,4-heptadienal), and hydrocarbons (n-dodecane, and n-tetradecane). Mono and sesquiterpenes showed also an increase over storage time. Consequently, and in order to avoid deterioration of VOO composition, chemometric analysis showed that the olive fruits should be processed as soon as possible after being harvested, with a maximum storage time of one week.


Subject(s)
Food Storage/methods , Fruit , Odorants/analysis , Olea , Olive Oil/analysis , Phenols/analysis , Volatile Organic Compounds/analysis , Humans , Hydrophobic and Hydrophilic Interactions , Italy , Oxidation-Reduction , Time Factors
5.
Physiol Plant ; 164(2): 134-144, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29220080

ABSTRACT

Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non-germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress-response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming-like effect, boosting seed germination and vigor under post-stress conditions, sustained by active metabolic machinery.


Subject(s)
Brassicaceae/drug effects , Germination/drug effects , Salt-Tolerant Plants/drug effects , Seeds/drug effects , Sodium Chloride/pharmacology , Brassicaceae/metabolism , Salt-Tolerant Plants/metabolism , Seeds/metabolism
6.
J Proteomics ; 75(18): 5667-94, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22940175

ABSTRACT

Responses of the halophyte Cakile maritima to moderate salinity were addressed at germination and vegetative stages by bringing together proteomics and eco-physiological approaches. 75 mM NaCl-salinity delayed significantly the germination process and decreased slightly the seed germination percentage compared to salt-free conditions. Monitoring the proteome profile between 0 h and 120 h after seed sowing revealed a delay in the degradation of seed storage proteins when germination took place under salinity, which may explain the slower germination rate observed. Of the sixty-seven proteins identified by mass spectrometry, several proteins involved in glycolysis, amino acid metabolism, photosynthesis, and protein folding showed significantly increased abundance during germination. This pattern was less pronounced under salinity. At the vegetative stage, 100mM NaCl-salinity stimulated significantly the plant growth, which was sustained by enhanced leaf expansion, water content, and photosynthetic activity. Comparative proteome analyses of leaf tissue revealed 44 proteins with different abundance changes, most of which being involved in energy metabolism. A specific set of proteins predominantly involved in photosynthesis and respiration showed significantly higher abundance in salt-treated plants. Altogether, combining proteomics with eco-physiological tools provides valuable information, which contributes to improve our understanding in the salt-response of this halophyte during its life cycle.


Subject(s)
Brassicaceae/physiology , Salt-Tolerant Plants/physiology , Brassicaceae/drug effects , Brassicaceae/growth & development , Germination/physiology , Photosynthesis , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteomics , Salinity , Seeds/drug effects , Seeds/metabolism , Sodium Chloride/pharmacology
7.
J Food Prot ; 73(10): 1891-901, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21067678

ABSTRACT

Four Tunisian virgin olive oils (VOOs), derived from varieties (Chemlali Tataouine, Zarrazi Douirat, Fakhari Douirat, and Dhokar Douirat) grown in the harsh pedoclimatic conditions of the region of Tataouine, were evaluated for their responses to microwave heating. Aside from fatty acid composition, all other evaluated parameters were affected by microwave heating, and their variations depend on the genetic factor. Chemlali Tataouine VOO exhibited the slowest biophenol degradation rate and the least diminution in oxidative stability and consequently, its total fraction and both lipidic and methanolic fractions remained unchanged with an exceptional antioxidant potential. In the remaining studied VOOs, the biophenol contents, the oxidative stability, and the antioxidant potential underwent gradual decreases; nevertheless, their levels at the longer treatment time are close to some fresh VOOs. These results should be taken into consideration when Tataouine VOOs are recommended for microwave heating.


Subject(s)
Food Handling/methods , Microwaves , Plant Oils/chemistry , Plant Oils/radiation effects , Antioxidants/analysis , Antioxidants/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Olive Oil , Oxidation-Reduction , Phenols/analysis , Phenols/metabolism , Tunisia
8.
J Agric Food Chem ; 56(17): 7992-8, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18690679

ABSTRACT

The Tataouine province in southern Tunisia is well known for its severe pedoclimatic conditions. Using solid phase microextraction (SPME) and gas chromatography (GC), coupled to flame ionization and mass spectrometer detectors, we characterized virgin olive oils from Chemlali Tataouine, Fakhari Douirat, Zarrazi Douirat, and Dhokar Douirat varieties, which grow in the harsh arid region of Tataouine. Significant differences in the proportions of volatile constituents from oils of different varieties were detected. The results showed that lipoxygenase products were generally the major metabolites of the volatile fraction, and (E)-Hex-2-enal was the principal compound characterizing the olive oil headspace for most samples, though the absolute levels varied greatly, never exceeding 76.45 and 32.16%, respectively. The C5 compounds were unusually abundant, comprising 42.97% of the total lipoxygenase products and a remarkably high level of penten dimers. Each autochthonous variety could thus be differentiated according to the percentage of each metabolite.


Subject(s)
Plant Oils/chemistry , Climate , Gas Chromatography-Mass Spectrometry , Hexobarbital/analysis , Lipoxygenase/metabolism , Olive Oil , Oxidation-Reduction , Phenols/analysis , Triglycerides/analysis , Tunisia , Volatilization
9.
Electron. j. biotechnol ; 9(5)Oct. 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-451672

ABSTRACT

In this study, a total of 14 agronomic traits, five AFLP primer combinations and ten SSR loci were used to describe and to classify a group of Tunisian olive genotypes into groups based on molecular profiles and agronomic traits. The analysis of variance of the agronomical data revealed significant differences among accessions for all measured traits. The mean phenotypic dissimilarity (0.34 with a range of 0.08-0.6) was low in comparison to dissimilarity calculated using AFLP (0.50 with a range of 0.16-0.70) and SSR markers (0.76 with a range 0.35-0.94). The correlation between the agronomical dissimilarity matrix and the matrices of genetic dissimilarity based on SSR and AFLP markers was very weak: 0.156 (p = 0.05) and 0.185 (p = 0.05), respectively. The SSR-AFLP dendrogram based on unweighted pair-group cluster analysis using Jaccard's index revealed that the genetic diversity was predominantly structured according to fruit size. A trend of clustering together of accessions originating from the same or adjacent regions was also observed. The data obtained can be used for the varietal survey and construction of a database of all olive varieties grown in Tunisia and providing also additional information that could form the basis for the rational design of breeding programs.

10.
C R Biol ; 328(8): 745-57, 2005 Aug.
Article in French | MEDLINE | ID: mdl-16125652

ABSTRACT

Treatment of rape seedlings with increasing CdCl2 concentrations in the culture medium resulted in a cadmium accumulation within plant tissues, which increased with external metal dose; such accumulation was more important in roots than in leaves. Biomass production was severely inhibited, even at low cadmium concentration. In leaves, quantities of chloroplastic lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfolipids (SL) and phosphatidylglycerol (PG) decreased sharply under metallic treatment. However, contents of extrachloroplastic lipids, mainly phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased significantly. In contrast to leaves, contents of root phospholipids decreased. Likewise, levels of tri-unsaturated fatty acids: linolenic (C18:3) and hexadecatrienoïc (C16:3) dropped in leaves of treated seedlings as compared to those of controls, suggesting that heavy metals induced an alteration in the fatty acid desaturation process or a stimulation of their peroxidation. Also, trans palmitoleic acid (C16:1-trans) level in PG decreased considerably. In roots, there was a slight decrease in C18:3 level, with a concomitant increase in the C18:2 percentage. Radioactive labelling of leaf lipids with (1-14C) acetate allowed to show that fatty acid biosynthesis was noticeably altered at the highest cadmium dose used (50 microM). Biosynthesis of tri-unsaturated fatty acids was also inhibited which may explain the decline in non-labelled lipid contents. Results showed that metallic ion seems to affect selectively chloroplastic membranes due to an inhibition of polyunsaturated fatty acid biosynthesis. Moreover, a lipid peroxidation occurred in our case because of the spectacular increase of malondialdehyde (MDA) content observed in cadmium treated leaves.


Subject(s)
Brassica napus/metabolism , Cadmium/pharmacology , Lipid Metabolism , Brassica napus/drug effects , Cadmium Chloride/pharmacology , Lipid Peroxidation/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...