Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 10: 1214116, 2023.
Article in English | MEDLINE | ID: mdl-37469481

ABSTRACT

Secondary lymphedema is a common condition among cancer survivors, and treatment strategies to prevent or treat lymphedema are in high demand. The development of novel strategies to diagnose or treat lymphedema would benefit from a robust experimental animal model of secondary lymphedema. The purpose of this methods paper is to describe and summarize our experience in developing and characterizing a rat hindlimb model of lymphedema. Here we describe a protocol to induce secondary lymphedema that takes advantage of micro computed tomography imaging for limb volume measurements and visualization of lymph drainage with near infrared imaging. To demonstrate the utility of this preclinical model for studying the therapeutic benefit of novel devices, we apply this animal model to test the efficacy of a biomaterials-based implantable medical device.

2.
J Surg Oncol ; 125(2): 113-122, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34549427

ABSTRACT

BACKGROUND: We tested our hypothesis that implantation of aligned nanofibrillar collagen scaffolds (BioBridge™) can both prevent and reduce established lymphedema in the rat lymphedema model. Our authors report clinical cases that demonstrate new lymphatic formation guided by BioBridge™ as seen by near-infrared (NIR) fluoroscopy and magnetic resonance (MR) lymphography. METHODS: A rat lymphedema model was utilized. A prevention group received implantation of BioBridge™ immediately after lymphadenectomy. A lymphedema group received implantation of BioBridge™ with autologous adipose-derived stem cells (ADSC; treatment group) or remained untreated (control group). All subjects were observed for 4 months after lymphadenectomy. The hindlimb change was evaluated using computed tomography-based volumetric analysis. Lymphagiogenesis was assessed by indocyanine green (ICG) lymphography. RESULTS: Animals in the treatment group showed a reduction in affected limb volume. Animals in the prevention group showed no increase in the affected limb volume. ICG fluoroscopy demonstrated lymph flow and formation of lymphatics toward healthy lymphatics. CONCLUSIONS: In the rat lymphedema model, implantation of BioBridge™ at the time of lymph node removal prevents the development of lymphedema. Treatment of established lymphedema with the BioBridge™ and ADSC reduces lymphedema. New lymphatic vessels are demonstrated by NIR fluoroscopy and MR lymphography. These findings have implications for the treatment of lymphedema in human subjects.


Subject(s)
Lymphangiogenesis/physiology , Lymphedema/surgery , Regeneration/physiology , Tissue Scaffolds , Animals , Female , Fluoroscopy , Humans , Indocyanine Green , Male , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
3.
Article in English | MEDLINE | ID: mdl-32766213

ABSTRACT

Cell therapy for treatment of peripheral arterial disease (PAD) is a promising approach but is limited by poor cell survival when cells are delivered using saline. The objective of this study was to examine the feasibility of aligned nanofibrillar scaffolds as a vehicle for the delivery of human stromal vascular fraction (SVF), and then to assess the efficacy of the cell-seeded scaffolds in a murine model of PAD. Flow cytometric analysis was performed to characterize the phenotype of SVF cells from freshly isolated lipoaspirate, as well as after attachment onto aligned nanofibrillar scaffolds. Flow cytometry results demonstrated that the SVF consisted of 33.1 ± 9.6% CD45+ cells, a small fraction of CD45-/CD31+ (4.5 ± 3.1%) and 45.4 ± 20.0% of CD45-/CD31-/CD34+ cells. Although the subpopulations of SVF did not change significantly after attachment to the aligned nanofibrillar scaffolds, protein secretion of vascular endothelial growth factor (VEGF) significantly increased by six-fold, compared to SVF cultured in suspension. Importantly, when SVF-seeded scaffolds were transplanted into immunodeficient mice with induced hindlimb ischemia, the cell-seeded scaffolds induced a significant higher mean perfusion ratio after 14 days, compared to cells delivered using saline. Together, these results show that aligned nanofibrillar scaffolds promoted cellular attachment, enhanced the secretion of VEGF from attached SVF cells, and their implantation with attached SVF cells stimulated blood perfusion recovery. These findings have important therapeutic implications for the treatment of PAD using SVF.

SELECTION OF CITATIONS
SEARCH DETAIL
...