Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Infect Dis ; 18(12): e379-e394, 2018 12.
Article in English | MEDLINE | ID: mdl-30292478

ABSTRACT

No uniformly organised collection of data regarding antimicrobial resistance has occurred in the countries of the Arab League. 19 countries of the Arab League have published data for antimicrobial susceptibility for the WHO priority organisms, and seven of 14 of these organisms are included in this Review (Escherichia coli, Klebsiella spp, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella spp, Staphylococcus aureus, and Streptococcus pneumoniae). Although E coli and Klebsiella spp resistance to third-generation cephalosporins is common in all countries, with prevalence reaching more than 50% in Egypt and Syria, carbapenem resistance is emerging, albeit with a prevalence of less than 10%. Conversely, a large amount of carbapenem resistance has been reported for P aeruginosa and A baumannii across the Arab League, reaching 50% and 88% of isolates in some countries. As for Salmonella spp, the prevalence of fluoroquinolone resistance has exceeded 30% in several areas. With regards to the Gram-positive pathogens, the prevalence of meticillin resistance in S aureus is reported to be between 20% and 30% in most countries, but exceeds 60% in Egypt and Iraq. The prevalence of penicillin non-susceptibility among pneumococci has reached more than 20% in Algeria, Egypt, Morocco, Saudi Arabia, and Tunisia. These findings highlight the need for structured national plans in the region to target infection prevention and antimicrobial stewardship.


Subject(s)
Bacteria/drug effects , Drug Resistance, Bacterial , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Arab World , Bacteria/classification , Bacteria/isolation & purification , Humans , Prevalence
2.
Expert Rev Anti Infect Ther ; 15(7): 645-652, 2017 07.
Article in English | MEDLINE | ID: mdl-28657373

ABSTRACT

INTRODUCTION: Beta-lactams are at the cornerstone of therapy in critical care settings, but their clinical efficacy is challenged by the rise in bacterial resistance. Infections with multi-drug resistant organisms are frequent in intensive care units, posing significant therapeutic challenges. The problem is compounded by a dearth in the development of new antibiotics. In addition, critically-ill patients have unique physiologic characteristics that alter the drugs pharmacokinetics and pharmacodynamics. Areas covered: The prolonged infusion of antibiotics (extended infusion [EI] and continuous infusion [CI]) has been the focus of research in the last decade. As beta-lactams have time-dependent killing characteristics that are altered in critically-ill patients, prolonged infusion is an attractive approach to maximize their drug delivery and efficacy. Several studies have compared traditional dosing to EI/CI of beta-lactams with regard to clinical efficacy. Clinical data are primarily composed of retrospective studies and some randomized controlled trials. Several reports show promising results. Expert commentary: Reviewing the currently available evidence, we conclude that EI/CI is probably beneficial in the treatment of critically-ill patients in whom an organism has been identified, particularly those with respiratory infections. Further studies are needed to evaluate the efficacy of EI/CI in the management of infections with resistant organisms.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Critical Illness , Drug Resistance, Bacterial , beta-Lactams/administration & dosage , beta-Lactams/therapeutic use , Bacterial Infections/drug therapy , Drug Administration Schedule , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...