Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 49(7): 490-500, 2021 07.
Article in English | MEDLINE | ID: mdl-34031138

ABSTRACT

Veverimer is a polymer being developed as a potential treatment of metabolic acidosis in patients with chronic kidney disease. Veverimer selectively binds and removes hydrochloric acid from the gastrointestinal tract, resulting in an increase in serum bicarbonate. Veverimer is not systemically absorbed, so potential drug-drug interactions (DDIs) are limited to effects on the absorption of other oral drugs through binding to veverimer in the gastrointestinal tract or increases in gastric pH caused by veverimer binding to hydrochloric acid. In in vitro binding experiments using a panel of 16 test drugs, no positively charged, neutral, or zwitterionic drugs bound to veverimer. Three negatively charged drugs (furosemide, aspirin, ethacrynic acid) bound to veverimer; however, this binding was reduced or eliminated in the presence of normal physiologic concentrations (100-170 mM) of chloride. Veverimer increased gastric pH in vivo by 1.5-3 pH units. This pH elevation peaked within 1 hour and had returned to baseline after 1.5-3 hours. Omeprazole did not alter the effect of veverimer on gastric pH. The clinical relevance of in vitro binding and the transient increase in gastric pH was evaluated in human DDI studies using two drugs with the most binding to veverimer (furosemide, aspirin) and two additional drugs with pH-dependent solubility effecting absorption (dabigatran, warfarin). None of the four drugs showed clinically meaningful DDI with veverimer in human studies. Based on the physicochemical characteristics of veverimer and results from in vitro and human studies, veverimer is unlikely to have significant DDIs. SIGNIFICANCE STATEMENT: Patients with chronic kidney disease, who are usually on many drugs, are vulnerable to drug-drug interactions (DDIs). The potential for DDIs with veverimer was evaluated based on the known site of action and physicochemical structure of the polymer, which restricts the compound to the gastrointestinal tract. Based on the findings from in vitro and human studies, we conclude that veverimer is unlikely to have clinically significant DDIs.


Subject(s)
Acidosis/drug therapy , Polymers/pharmacokinetics , Renal Insufficiency, Chronic/drug therapy , Absorption, Physicochemical , Acidosis/etiology , Administration, Oral , Adolescent , Adult , Aspirin/administration & dosage , Aspirin/chemistry , Aspirin/pharmacokinetics , Cross-Over Studies , Dabigatran/administration & dosage , Dabigatran/chemistry , Dabigatran/pharmacokinetics , Drug Interactions , Ethacrynic Acid/administration & dosage , Ethacrynic Acid/chemistry , Ethacrynic Acid/pharmacokinetics , Female , Furosemide/administration & dosage , Furosemide/chemistry , Furosemide/pharmacokinetics , Gastrointestinal Absorption , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Polymers/administration & dosage , Polymers/chemistry , Polypharmacy , Renal Insufficiency, Chronic/complications , Solubility , Warfarin/administration & dosage , Warfarin/chemistry , Warfarin/pharmacokinetics , Young Adult
2.
J Pharmacol Exp Ther ; 375(3): 439-450, 2020 12.
Article in English | MEDLINE | ID: mdl-33033169

ABSTRACT

Current management of metabolic acidosis in patients with chronic kidney disease (CKD) relies on dietary intervention to reduce daily endogenous acid production or neutralization of retained acid with oral alkali (sodium bicarbonate, sodium citrate). Veverimer is being developed as a novel oral treatment for metabolic acidosis through removal of intestinal acid, resulting in an increase in serum bicarbonate. Veverimer is a free-amine polymer that combines high capacity and selectivity to bind and remove hydrochloric acid (HCl) from the gastrointestinal (GI) tract. In vitro studies demonstrated that veverimer had a binding capacity of 10.7 ± 0.4 mmol HCl per gram of polymer with significant binding capacity (>5 mmol/g) across the range of pH values found in the human GI tract (1.5-7). Upon protonation, veverimer bound chloride with high specificity but showed little or no binding of phosphate, citrate, or taurocholate (<1.5 mmol/g), which are all anions commonly found in the human GI tract. Administration of veverimer to rats with adenine-induced CKD and metabolic acidosis resulted in a significant increase in fecal chloride excretion and a dose-dependent increase in serum bicarbonate to within the normal range compared with untreated controls. Absorption, distribution, metabolism, and excretion studies in rats and dogs dosed with 14C-labeled veverimer showed that the polymer was not absorbed from the GI tract and was quantitatively eliminated in the feces. Acid removal by veverimer, an orally administered, nonabsorbed polymer, may provide a potential new treatment for metabolic acidosis in patients with CKD. SIGNIFICANCE STATEMENT: Metabolic acidosis is a complication of chronic kidney disease (CKD) as well as a cause of CKD progression. Veverimer is a high-capacity, selective, nonabsorbed, hydrochloric acid-binding polymer being developed as a treatment for metabolic acidosis. Veverimer binds and removes hydrochloric acid from the gastrointestinal tract, resulting in increased serum bicarbonate and the correction of metabolic acidosis. Veverimer is not an ion-exchange resin and does not deliver sodium or other counterions, and so it may be appropriate for patients with CKD with and without sodium-sensitive comorbidities.


Subject(s)
Acidosis/complications , Acidosis/drug therapy , Hydrochloric Acid/metabolism , Polymers/administration & dosage , Polymers/pharmacology , Renal Insufficiency, Chronic/complications , Acidosis/metabolism , Administration, Oral , Animals , Biological Availability , Hydrogen-Ion Concentration , Male , Polymers/chemistry , Polymers/pharmacokinetics , Rats , Rats, Sprague-Dawley , Solubility
3.
PLoS One ; 8(7): e71043, 2013.
Article in English | MEDLINE | ID: mdl-23923050

ABSTRACT

High-throughput screening for interactions of peptides with a variety of antibody targets could greatly facilitate proteomic analysis for epitope mapping, enzyme profiling, drug discovery and biomarker identification. Peptide microarrays are suited for such undertaking because of their high-throughput capability. However, existing peptide microarrays lack the sensitivity needed for detecting low abundance proteins or low affinity peptide-protein interactions. This work presents a new peptide microarray platform constructed on nanostructured plasmonic gold substrates capable of metal enhanced NIR fluorescence enhancement (NIR-FE) by hundreds of folds for screening peptide-antibody interactions with ultrahigh sensitivity. Further, an integrated histone peptide and whole antigen array is developed on the same plasmonic gold chip for profiling human antibodies in the sera of systemic lupus erythematosus (SLE) patients, revealing that collectively a panel of biomarkers against unmodified and post-translationally modified histone peptides and several whole antigens allow more accurate differentiation of SLE patients from healthy individuals than profiling biomarkers against peptides or whole antigens alone.


Subject(s)
Antibodies/immunology , Protein Array Analysis , Proteomics , Antibodies/blood , Antigens/immunology , Cluster Analysis , Epitopes/immunology , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Peptides/immunology , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Protein Binding/immunology , Proteomics/instrumentation , Proteomics/methods
4.
ACS Nano ; 6(6): 4694-701, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22607191

ABSTRACT

Photoacoustic imaging is a unique modality that overcomes to a great extent the resolution and depth limitations of optical imaging while maintaining relatively high contrast. However, since many diseases will not manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast agents that can target diseased tissue(s). Here we present a family of novel photoacoustic contrast agents that are based on the binding of small optical dyes to single-walled carbon nanotubes (SWNT-dye). We synthesized five different SWNT-dye contrast agents using different optical dyes, creating five "flavors" of SWNT-dye nanoparticles. In particular, SWNTs that were coated with either QSY(21) (SWNT-QSY) or indocyanine green (SWNT-ICG) exhibited over 100-times higher photoacoustic contrast in living animals compared to plain SWNTs, leading to subnanomolar sensitivities. We then conjugated the SWNT-dye conjugates with cyclic Arg-Gly-Asp peptides to molecularly target the α(v)ß(3) integrin, which is associated with tumor angiogenesis. Intravenous administration of these tumor-targeted imaging agents to tumor-bearing mice showed significantly higher photoacoustic signal in the tumor than in mice injected with the untargeted contrast agent. Finally, we were able to spectrally separate the photoacoustic signals of SWNT-QSY and SWNT-ICG in living animals injected subcutaneously with both particles in the same location, opening the possibility for multiplexing in vivo studies.


Subject(s)
Contrast Media/chemical synthesis , Fluorescent Dyes , Image Enhancement/methods , Microscopy, Fluorescence/methods , Nanotubes, Carbon/chemistry , Neoplasms, Experimental/pathology , Photoacoustic Techniques/methods , Animals , Materials Testing , Mice , Mice, Inbred C57BL , Sensitivity and Specificity
5.
ACS Nano ; 6(2): 1094-101, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22229344

ABSTRACT

Graphite-coated, highly magnetic FeCo core-shell nanoparticles were synthesized by a chemical vapor deposition method and solubilized in aqueous solution through a unique polymer mixture modification, which significantly improved the biocompatibility and stability of the magnetic nanoparticles (MNPs). Such functionalized MNPs were proven to be very stable in different conditions which would be significant for biological applications. Cell staining, manipulation, enrichment, and detection were developed with these MNPs. Under external magnetic manipulation, the MNP-stained cells exhibited directed motions. Moreover, MNPs were printed on substrates to modulate the magnetic field distribution on the surface. Capture and detection of sparse populations of cancer cells spiked into whole blood has been explored in a microarray fashion. Cancer cells from hundreds down to only two were able to be simply and efficiently detected from 1 mL of whole blood on the MNP microarray chips. Interestingly, the cells captured through the MNP microarray still showed viability and adhered to the MNP spots after incubation, which could be utilized for cancer cell detection, localized growth, and proliferation.


Subject(s)
Cell Separation/methods , Ferric Compounds/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Tissue Array Analysis/methods , Cell Line, Tumor , Humans
6.
Nat Commun ; 2: 466, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21915108

ABSTRACT

Protein chips are widely used for high-throughput proteomic analysis, but to date, the low sensitivity and narrow dynamic range have limited their capabilities in diagnostics and proteomics. Here we present protein microarrays on a novel nanostructured, plasmonic gold film with near-infrared fluorescence enhancement of up to 100-fold, extending the dynamic range of protein detection by three orders of magnitude towards the fM regime. We employ plasmonic protein microarrays for the early detection of a cancer biomarker, carcinoembryonic antigen, in the sera of mice bearing a xenograft tumour model. Further, we demonstrate a multiplexed autoantigen array for human autoantibodies implicated in a range of autoimmune diseases with superior signal-to-noise ratios and broader dynamic range compared with commercial nitrocellulose and glass substrates. The high sensitivity, broad dynamic range and easy adaptability of plasmonic protein chips presents new opportunities in proteomic research and diagnostics applications.


Subject(s)
Biomarkers, Tumor/blood , Carcinoembryonic Antigen/blood , Protein Array Analysis , Animals , Autoantibodies/immunology , Autoantigens/immunology , Fluorescence , Mice , Microscopy, Electron, Scanning , Transplantation, Heterologous
7.
J Am Chem Soc ; 133(17): 6825-31, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21476500

ABSTRACT

We developed nanosized, reduced graphene oxide (nano-rGO) sheets with high near-infrared (NIR) light absorbance and biocompatibility for potential photothermal therapy. The single-layered nano-rGO sheets were ∼20 nm in average lateral dimension, functionalized noncovalently by amphiphilic PEGylated polymer chains to render stability in biological solutions and exhibited 6-fold higher NIR absorption than nonreduced, covalently PEGylated nano-GO. Attaching a targeting peptide bearing the Arg-Gly-Asp (RGD) motif to nano-rGO afforded selective cellular uptake in U87MG cancer cells and highly effective photoablation of cells in vitro. In the absence of any NIR irradiation, nano-rGO exhibited little toxicity in vitro at concentrations well above the doses needed for photothermal heating. This work established nano-rGO as a novel photothermal agent due to its small size, high photothermal efficiency, and low cost as compared to other NIR photothermal agents including gold nanomaterials and carbon nanotubes.


Subject(s)
Glioblastoma/therapy , Graphite/therapeutic use , Nanostructures/therapeutic use , Oxides/therapeutic use , Photosensitizing Agents/therapeutic use , Phototherapy/methods , Cell Line, Tumor , Graphite/chemistry , Humans , Infrared Rays , Nanostructures/chemistry , Oxidation-Reduction , Oxides/chemistry , Photosensitizing Agents/chemistry
9.
Small ; 7(4): 499-505, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21360809

ABSTRACT

Surface-enhanced Raman scattering (SERS) vastly improves signal-to-noise ratios as compared to traditional Raman scattering, making sensitive assays based upon Raman scattering a reality. However, preparation of highly stable SERS-active gold substrates requires complicated and expensive methodologies and instrumentation. Here, a general and completely solution-phase, seed-based approach is introduced, which is capable of producing gold films for SERS applications on a variety of substrates, not requiring surface modification or functionalization. SERS enhancement factors of ≈10(7) were observed. Moreover, solution-phase gold film deposition on highly complex surfaces, such as protein-coated bioassays, is demonstrated for the first time. Protein bioassays coated with such SERS-active gold films are combined with bioconjugated single-walled carbon nanotube Raman labels, affording highly sensitive detection of the cancer biomarker, carcinoembryonic antigen in serum, with a limit of detection of ≈5 fM (1 pg mL(-1) ).


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Biological Assay/methods
10.
ACS Nano ; 5(2): 1505-12, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21284398

ABSTRACT

FeCo/graphitic carbon shell (FeCo/GC) nanocrystals (∼4-5 nm in diameter) with ultrahigh magnetization are synthesized, functionalized, and developed into multifunctional biocompatible materials. We demonstrate the ability of this material to serve as an integrated system for combined drug delivery, near-infrared (NIR) photothermal therapy, and magnetic resonance imaging (MRI) in vitro. We show highly efficient loading of doxorubicin (DOX) by π-stacking on the graphitic shell to afford FeCo/GC-DOX complexes and pH sensitive DOX release from the particles. We observe enhanced intracellular drug delivery by FeCo/GC-DOX under 20 min of NIR laser (808 nm) induced hyperthermia to 43 °C, resulting in a significant increase of FeCo/GC-DOX toxicity toward breast cancer cells. The synergistic cancer cell killing by FeCo/GC-DOX drug delivery under photothermal heating is due to a ∼two-fold enhancement of cancer cell uptake of FeCo/GC-DOX complex and the increased DOX toxicity under the 43 °C hyperthermic condition. The combination of synergistic NIR photothermally enhanced drug delivery and MRI with the FeCo/GC nanocrystals could lead to a powerful multimodal system for biomedical detection and therapy.


Subject(s)
Cobalt/chemistry , Drug Carriers/chemistry , Graphite/chemistry , Iron/chemistry , Light , Nanoparticles/chemistry , Particle Size , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Carriers/toxicity , Humans , Molecular Imaging
11.
J Am Chem Soc ; 132(45): 15920-3, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20979398

ABSTRACT

The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.


Subject(s)
Fluorescence , Gold/chemistry , Nanotubes, Carbon/chemistry , Quantum Dots
12.
J Phys Chem C Nanomater Interfaces ; 114(46): 19569-19575, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21258607

ABSTRACT

Single-walled carbon nanotubes (SWNTs) are promising materials for in vitro and in vivo biological applications due to their high surface area and inherent near infrared photoluminescence and Raman scattering properties. Here, we use density gradient centrifugation to separate SWNTs by length and degree of bundling. Following separation, we observe a peak in photoluminescence quantum yield (PL QY) and Raman scattering intensity where SWNT length is maximized and bundling is minimized. Individualized SWNTs are found to exhibit high PL QY and high resonance-enhanced Raman scattering intensity. Fractions containing long, individual SWNTs exhibit the highest PL QY and Raman scattering intensities, compared to fractions containing single, short SWNTs or SWNT bundles. Intensity gains of approximately ~1.7 and 4-fold, respectively, are obtained compared with the starting material. Spectroscopic analysis reveals that SWNT fractions at higher displacement contain increasing proportions of SWNT bundles, which causes reduced optical transition energies and broadening of absorption features in the UV-Vis-NIR spectra, and reduced PL QY and Raman scattering intensity. Finally, we adsorb small aromatic species on "bright," individualized SWNT sidewalls and compare the resulting absorption, PL and Raman scattering effects to that of SWNT bundles. We observe similar effects in both cases, suggesting aromatic stacking affects the optical properties of SWNTs in an analogous way to SWNT bundles, likely due to electronic structure perturbations, charge transfer, and dielectric screening effects, resulting in reduction of the excitonic optical transition energies and exciton lifetimes.

13.
Nano Res ; 3(11): 779-793, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21804931

ABSTRACT

Short single-walled carbon nanotubes (SWNTs) functionalized by PEGylated phospholipids are biologically non-toxic and long-circulating nanomaterials with intrinsic near infrared photoluminescence (NIR PL), characteristic Raman spectra, and strong optical absorbance in the near infrared (NIR). This work demonstrates the first dual application of intravenously injected SWNTs as photoluminescent agents for in vivo tumor imaging in the 1.0-1.4 µm emission region and as NIR absorbers and heaters at 808 nm for photothermal tumor elimination at the lowest injected dose (70 µg of SWNT/mouse, equivalent to 3.6 mg/kg) and laser irradiation power (0.6 W/cm(2)) reported to date. Ex vivo resonance Raman imaging revealed the SWNT distribution within tumors at a high spatial resolution. Complete tumor elimination was achieved for large numbers of photothermally treated mice without any toxic side effects after more than six months post-treatment. Further, side-by-side experiments were carried out to compare the performance of SWNTs and gold nanorods (AuNRs) at an injected dose of 700 µg of AuNR/mouse (equivalent to 35 mg/kg) in NIR photothermal ablation of tumors in vivo. Highly effective tumor elimination with SWNTs was achieved at 10 times lower injected doses and lower irradiation powers than for AuNRs. These results suggest there are significant benefits of utilizing the intrinsic properties of biocompatible SWNTs for combined cancer imaging and therapy.

14.
Nano Res ; 3(3): 222-233, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-21442006

ABSTRACT

Single-walled carbon nanotubes (SWNTs) with five different C13/C12 isotope compositions and well-separated Raman peaks have been synthesized and conjugated to five targeting ligands in order to impart molecular specificity. Multiplexed Raman imaging of live cells has been carried out by highly specific staining of cells with a five-color mixture of SWNTs. Ex vivo multiplexed Raman imaging of tumor samples uncovers a surprising up-regulation of epidermal growth factor receptor (EGFR) on LS174T colon cancer cells from cell culture to in vivo tumor growth. This is the first time five-color multiplexed molecular imaging has been performed in the near-infrared (NIR) region under a single laser excitation. Near zero interfering background of imaging is achieved due to the sharp Raman peaks unique to nanotubes over the low, smooth autofluorescence background of biological species.

15.
Nat Protoc ; 4(9): 1372-82, 2009.
Article in English | MEDLINE | ID: mdl-19730421

ABSTRACT

Biomedical applications of carbon nanotubes have attracted much attention in recent years. Here, we summarize our previously developed protocols for functionalization and bioconjugation of single-walled carbon nanotubes (SWNTs) for various biomedical applications including biological imaging; using nanotubes as Raman, photoluminescence and photoacoustic labels; sensing using nanotubes as Raman tags and drug delivery. Sonication of SWNTs in solutions of phospholipid-polyethylene glycol (PL-PEG) is our most commonly used protocol of SWNT functionalization. Compared with other frequently used covalent strategies, our non-covalent functionalization protocol largely retains the intrinsic optical properties of SWNTs, which are useful in various biological imaging and sensing applications. Functionalized SWNTs are conjugated with targeting ligands, including peptides and antibodies for specific cell labeling in vitro or tumor targeting in vivo. Radio labels are introduced for tracking and imaging of SWNTs in real time in vivo. Moreover, SWNTs can be conjugated with small interfering RNA (siRNA) or loaded with chemotherapy drugs for drug delivery. These procedures take various times ranging from 1 to 5 d.


Subject(s)
Biocompatible Materials/chemistry , Biomedical Technology/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Animals , Antibodies/chemistry , Drug Delivery Systems , Ligands , Mice , Mice, Nude , Polyethylene Glycols , Positron-Emission Tomography , RNA Interference , RNA, Small Interfering/chemistry , Solubility , Spectrum Analysis, Raman , Staining and Labeling
16.
J Am Chem Soc ; 131(13): 4783-7, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19173646

ABSTRACT

Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(gamma-glutamic acid) (gammaPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gammaPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gammaPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Moreover, the polymer-coated SWNTs exhibit remarkably long blood circulation (t(1/2) = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery.


Subject(s)
Carbon/chemistry , Gold/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Animals , Blood Circulation Time , Mice , Nanostructures/ultrastructure , Polyethylene Glycols/chemical synthesis , Solubility
17.
Nano Res ; 2(2): 85-120, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-20174481

ABSTRACT

Carbon nanotubes exhibit many unique intrinsic physical and chemical properties and have been intensively explored for biological and biomedical applications in the past few years. In this comprehensive review, we summarize the main results from our and other groups in this field and clarify that surface functionalization is critical to the behavior of carbon nanotubes in biological systems. Ultrasensitive detection of biological species with carbon nanotubes can be realized after surface passivation to inhibit the non-specific binding of biomolecules on the hydrophobic nanotube surface. Electrical nanosensors based on nanotubes provide a label-free approach to biological detection. Surface-enhanced Raman spectroscopy of carbon nanotubes opens up a method of protein microarray with detection sensitivity down to 1 fmol/L. In vitro and in vivo toxicity studies reveal that highly water soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. In vivo biodistributions vary with the functionalization and possibly also size of nanotubes, with a tendency to accumulate in the reticuloendothelial system (RES), including the liver and spleen, after intravenous administration. If well functionalized, nanotubes may be excreted mainly through the biliary pathway in feces. Carbon nanotube-based drug delivery has shown promise in various In vitro and in vivo experiments including delivery of small interfering RNA (siRNA), paclitaxel and doxorubicin. Moreover, single-walled carbon nanotubes with various interesting intrinsic optical properties have been used as novel photoluminescence, Raman, and photoacoustic contrast agents for imaging of cells and animals. Further multidisciplinary explorations in this field may bring new opportunities in the realm of biomedicine.

19.
J Am Chem Soc ; 131(1): 289-96, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19061329

ABSTRACT

Nanomaterials hold much promise for biological applications, but they require appropriate functionalization to provide biocompatibility in biological environments. For noncovalent functionalization with biocompatible polymers, the polymer must also remain attached to the nanomaterial after removal of its excess to mimic the high-dilution conditions of administration in vivo. Reported here are the synthesis and utilization of singly substituted conjugates of dextran and a phospholipid (dextran-DSPE) as stable coatings for nanomaterials. Suspensions of single-walled carbon nanotubes were found not only to be stable to phosphate buffered saline (PBS), serum, and a variety of pH's after excess polymer removal, but also to provide brighter photoluminescence than carbon nanotubes suspended by poly(ethylene glycol)-DSPE. In addition, both gold nanoparticles (AuNPs) and gold nanorods (AuNRs) were found to maintain their dispersion and characteristic optical absorbance after transfer into dextran-DSPE and were obtained in much better yield than similar suspensions with PEG-phospholipid and commonly used thiol-PEG. These suspensions were also stable to PBS, serum, and a variety of pH's after removal of excess polymer. dextran-DSPE thus shows great promise as a general surfactant material for the functionalization of a variety of nanomaterials, which could facilitate future biological applications.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , Dextrans/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Coated Materials, Biocompatible/chemistry , Drug Stability , Luminescent Measurements , Micelles , Nanotubes/chemistry , Spectrometry, Fluorescence
20.
Nat Biotechnol ; 26(11): 1285-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18953353

ABSTRACT

The current sensitivity of standard fluorescence-based protein detection limits the use of protein arrays in research and clinical diagnosis. Here, we use functionalized, macromolecular single-walled carbon nanotubes (SWNTs) as multicolor Raman labels for highly sensitive, multiplexed protein detection in an arrayed format. Unlike fluorescence methods, Raman detection benefits from the sharp scattering peaks of SWNTs with minimal background interference, affording a high signal-to-noise ratio needed for ultra-sensitive detection. When combined with surface-enhanced Raman scattering substrates, the strong Raman intensity of SWNT tags affords protein detection sensitivity in sandwich assays down to 1 fM--a three-order-of-magnitude improvement over most reports of fluorescence-based detection. We use SWNT Raman tags to detect human autoantibodies against proteinase 3, a biomarker for the autoimmune disease Wegener's granulomatosis, diluted up to 10(7)-fold in 1% human serum. SWNT Raman tags are not subject to photobleaching or quenching. By conjugating different antibodies to pure (12)C and (13)C SWNT isotopes, we demonstrate multiplexed two-color SWNT Raman-based protein detection.


Subject(s)
Autoantibodies/blood , Granulomatosis with Polyangiitis/diagnosis , Nanotubes, Carbon/chemistry , Protein Array Analysis/methods , Spectrum Analysis, Raman/methods , Animals , Carbon Isotopes/chemistry , Carbon Radioisotopes/chemistry , Granulomatosis with Polyangiitis/immunology , Humans , Mice , Myeloblastin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...