Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38537634

ABSTRACT

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Subject(s)
Genome , Genomics , Rats , Animals , Genome/genetics , Molecular Sequence Annotation , Whole Genome Sequencing , Genetic Variation/genetics
2.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37214860

ABSTRACT

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

3.
Front Pharmacol ; 13: 1012013, 2022.
Article in English | MEDLINE | ID: mdl-36386206

ABSTRACT

The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.

4.
Front Genet ; 13: 947423, 2022.
Article in English | MEDLINE | ID: mdl-36186443

ABSTRACT

The Hybrid Rat Diversity Panel (HRDP) is a stable and well-characterized set of more than 90 inbred rat strains that can be leveraged for systems genetics approaches to understanding the genetic and genomic variation associated with complex disease. The HRDP exhibits substantial between-strain diversity while retaining substantial within-strain isogenicity, allowing for the precise mapping of genetic variation associated with complex phenotypes and providing statistical power to identify associated variants. In order to robustly identify associated genetic variants, it is important to account for the population structure induced by inbreeding. To this end, we investigate the performance of four plausible approaches towards modeling quantitative traits in the HRDP and quantify their operating characteristics. In particular, we investigate three approaches based on genome-wide mixed model analysis, and one approach based on ordinary least squares linear regression. Towards facilitating study planning and design, we conduct extensive simulations to investigate the power of genetic association analyses in the HRDP, and characterize the impressive attained power. In simulation of eQTL data in the HRDP, we find that a mixed model approach that leverages leave-one-chromosome-out kinship estimation attains the highest power while controlling type I error.

5.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Article in English | MEDLINE | ID: mdl-35493312

ABSTRACT

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

6.
Front Genet ; 13: 821026, 2022.
Article in English | MEDLINE | ID: mdl-35368676

ABSTRACT

Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556-3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.

7.
Biol Psychiatry ; 91(1): 43-52, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34274109

ABSTRACT

There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.


Subject(s)
Alcoholism , Alcohol Drinking/genetics , Animals , Brain , Female , Male , Sex Characteristics , Transcriptome
8.
Brain Res ; 1774: 147724, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34780749

ABSTRACT

Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , GABAergic Neurons/metabolism , Inflammation/metabolism , Monoamine Oxidase/metabolism , Animals , Brain Injuries/genetics , Cell Death/physiology , Dopaminergic Neurons/metabolism , Inflammation/genetics , Mice , Mice, Knockout , Monoamine Oxidase/genetics , Serotonin/metabolism
9.
Am J Respir Crit Care Med ; 204(7): e61-e87, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34609257

ABSTRACT

Background: Severe alcohol withdrawal syndrome (SAWS) is highly morbid, costly, and common among hospitalized patients, yet minimal evidence exists to guide inpatient management. Research needs in this field are broad, spanning the translational science spectrum. Goals: This research statement aims to describe what is known about SAWS, identify knowledge gaps, and offer recommendations for research in each domain of the Institute of Medicine T0-T4 continuum to advance the care of hospitalized patients who experience SAWS. Methods: Clinicians and researchers with unique and complementary expertise in basic, clinical, and implementation research related to unhealthy alcohol consumption and alcohol withdrawal were invited to participate in a workshop at the American Thoracic Society 2019 International Conference. The committee was subdivided into four groups on the basis of interest and expertise: T0-T1 (basic science research with translation to humans), T2 (research translating to patients), T3 (research translating to clinical practice), and T4 (research translating to communities). A medical librarian conducted a pragmatic literature search to facilitate this work, and committee members reviewed and supplemented the resulting evidence, identifying key knowledge gaps. Results: The committee identified several investigative opportunities to advance the care of patients with SAWS in each domain of the translational science spectrum. Major themes included 1) the need to investigate non-γ-aminobutyric acid pathways for alcohol withdrawal syndrome treatment; 2) harnessing retrospective and electronic health record data to identify risk factors and create objective severity scoring systems, particularly for acutely ill patients with SAWS; 3) the need for more robust comparative-effectiveness data to identify optimal SAWS treatment strategies; and 4) recommendations to accelerate implementation of effective treatments into practice. Conclusions: The dearth of evidence supporting management decisions for hospitalized patients with SAWS, many of whom require critical care, represents both a call to action and an opportunity for the American Thoracic Society and larger scientific communities to improve care for a vulnerable patient population. This report highlights basic, clinical, and implementation research that diverse experts agree will have the greatest impact on improving care for hospitalized patients with SAWS.


Subject(s)
Alcoholism/therapy , Biomedical Research , Central Nervous System Depressants/adverse effects , Ethanol/adverse effects , Hospitalization , Substance Withdrawal Syndrome/therapy , Alcoholism/physiopathology , Critical Care/methods , Critical Care/standards , Humans , Needs Assessment , Quality Improvement , Societies, Medical , Substance Withdrawal Syndrome/physiopathology , Translational Research, Biomedical
10.
Alcohol Clin Exp Res ; 45(5): 922-933, 2021 05.
Article in English | MEDLINE | ID: mdl-33682145

ABSTRACT

BACKGROUND: Alcohol use disorders (AUDs) are associated with altered regulation of physiological processes in the brain. Acetate, a metabolite of ethanol, has been implicated in several processes that are disrupted in AUDs including transcriptional regulation, metabolism, inflammation, and neurotransmission. To further understand the effects of acetate on brain function in AUDs, we investigated the effects of acetate on cerebral blood flow (CBF), systemic inflammatory cytokines, and behavior in AUD. METHODS: Sixteen participants with AUD were recruited from a nonmedical, clinically managed detoxification center. Each participant received acetate and placebo in a randomly assigned order of infusion and underwent 3T MR scanning using quantitative pseudo-continuous arterial spin labeling. Participants and the study team were blinded to the infusion. CBF values (ml/100 g/min) extracted from thalamus were compared between placebo and acetate using a mixed effect linear regression model accounting for infusion order. Voxel-wise CBF comparisons were set at threshold of p < 0.05 cluster-corrected for multiple comparisons, voxel-level p < 0.0001. Plasma cytokine levels and behavior were also assessed between infusions. RESULTS: Fifteen men and 1 woman were enrolled with Alcohol Use Disorders Identification Test (AUDIT) scores between 13 and 38 with a mean of 28.3 ± 9.1. Compared to placebo, acetate administration increased CBF in the thalamus bilaterally (Left: 51.2 vs. 68.8, p < 0.001; Right: 53.7 vs. 69.6, p = 0.001), as well as the cerebellum, brainstem, and cortex. Older age and higher AUDIT scores were associated with increases in acetate-induced thalamic blood flow. Cytokine levels and behavioral measures did not differ between placebo and acetate infusions. CONCLUSIONS: This pilot study in AUD suggests that during the first week of abstinence from alcohol, the brain's response to acetate differs by brain region and this response may be associated with the severity of alcohol dependence.


Subject(s)
Acetates/pharmacology , Alcoholism/metabolism , Behavior/drug effects , Cerebrovascular Circulation/drug effects , Cytokines/drug effects , Inflammation/metabolism , Thalamus/blood supply , Adult , Age Factors , Alcohol Abstinence , Alcoholism/physiopathology , Brain/blood supply , Cytokines/metabolism , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pilot Projects , Random Allocation
11.
Nat Commun ; 12(1): 1652, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712618

ABSTRACT

Annotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3'-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model-trained using the Human Brain Reference RNA commercial standard-performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi's input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Polyadenylation , Transcriptome , Animals , Base Sequence , Gene Expression Profiling , Humans , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Systems Biology
12.
Genes Brain Behav ; 20(2): e12698, 2021 02.
Article in English | MEDLINE | ID: mdl-32893479

ABSTRACT

LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The "hub gene" of this module, Lrap (Long non-coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of "Response to Ethanol" emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non-coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.


Subject(s)
Alcohol Drinking/genetics , Brain/metabolism , RNA, Long Noncoding/genetics , Alcohol Drinking/physiopathology , Animals , Quantitative Trait Loci , RNA, Long Noncoding/metabolism , Rats , Rats, Wistar , Transcriptome
13.
Article in English | MEDLINE | ID: mdl-33117893

ABSTRACT

We report on the ongoing project "A Novel Therapeutic to Ameliorate Chronic Pain and Reduce Opiate Use." Over 100 million adults in the U.S. suffer from intermittent or constant chronic pain, and chronic pain affects at least 10% of the world's population. The primary pharmaceuticals for treatment of chronic pain have been natural or synthetic opioids and the use of opioids for pain treatment has resulted in what has been called an "epidemic" of opioid abuse, addiction and lethal overdoses. We have, through a process of rational drug design, generated a novel chemical entity (NCE) and have given it the name Kindolor. Kindolor is a non-opiate, non-addicting molecule that was developed specifically to simultaneously control the aberrant activity of three targets on the peripheral sensory system that are integral in the development and propagation of chronic pain. In our initial preclinical studies, we demonstrated the efficacy of Kindolor to reduce or eliminate chronic pain in five animal models. The overall goal of the project is to complete the investigational new drug (IND)-enabling preclinical studies of Kindolor, and once IND approval is gained, we will proceed to the clinical Phase Ia and 1b safety studies and a Phase 2a efficacy study. The work is in its second year, and the present report describes progress toward our overall goal of bringing our compound to a full Phase 2 ready stage.

14.
Biomedicines ; 8(3)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197424

ABSTRACT

The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.

15.
Alcohol Clin Exp Res ; 43(10): 2070-2078, 2019 10.
Article in English | MEDLINE | ID: mdl-31386214

ABSTRACT

BACKGROUND: Acute alcohol produces effects on cerebral metabolism and blood flow. Alcohol is converted to acetate, which serves as a source of energy for the brain and is an agonist at G protein-coupled receptors distributed in different cell types in the body including neurons. Acetate has been hypothesized to play a role in the cerebral blood flow (CBF) response after alcohol ingestion. We tested whether administration of acetate would alter CBF in a pattern similar to or different from that of alcohol ingestion in healthy individuals. METHODS: Twenty-four healthy participants were assigned by convenience to receive either 0.6 g/kg alcohol orally (n = 12) or acetate intravenously (n = 12). For each participant, CBF maps were acquired using an arterial spin labeling sequence on a 3T magnetic resonance scanner after placebo and after drug administration. Whole-brain CBF maps were compared between placebo and drug using a paired t-test, and set at a threshold of p < 0.05 corrected for multiple comparisons (k ≥ 142 voxels, ≥3.78 cm3 ), voxel-level p < 0.005. Intoxication was measured after placebo and drug administration with a Subjective High Assessment Scale (SHAS-7). RESULTS: Compared to placebo, alcohol and acetate were associated with increased CBF in the medial thalamus. Alcohol, but not acetate, was associated with increased CBF in the right orbitofrontal, medial prefrontal and cingulate cortex, and hippocampus. Plasma acetate levels increased following administration of alcohol and acetate and did not differ between the 2 arms. Alcohol, but not acetate, was associated with an increase in SHAS-7 scores (p < 0.001). CONCLUSIONS: Increased thalamic CBF associated with either alcohol or acetate administration suggests that the thalamic CBF response after alcohol could be mediated by acetate. Compared to other brain regions, thalamus may differ in its ability to metabolize acetate or expression of receptors responsive to acetate. Increased prefrontal and limbic CBF associated with alcohol may be linked to alcohol's behavioral effects.


Subject(s)
Acetates/pharmacology , Central Nervous System Depressants/pharmacology , Cerebrovascular Circulation/drug effects , Ethanol/pharmacology , Acetates/blood , Administration, Intravenous , Administration, Oral , Adult , Alcohol Drinking/psychology , Brain/diagnostic imaging , Central Nervous System Depressants/blood , Ethanol/blood , Female , Humans , Magnetic Resonance Imaging , Male , Pilot Projects , Thalamus/blood supply , Thalamus/drug effects , Young Adult
16.
Methods Mol Biol ; 2018: 213-231, 2019.
Article in English | MEDLINE | ID: mdl-31228159

ABSTRACT

One of the most fruitful resources for systems genetic studies of nonhuman mammals is a panel of inbred strains that exhibits significant genetic diversity between strains but genetic stability (isogenicity) within strains. These characteristics allow for fine mapping of complex phenotypes (QTLs) and provide statistical power to identify loci which contribute nominally to the phenotype. This type of resource also allows the planning and performance of investigations using the same genetic backgrounds over several generations of the test animals. Often, rats are preferred over mice for physiologic and behavioral studies because of their larger size and more distinguishable anatomy (particularly for their central nervous system). The Hybrid Rat Diversity Panel (HRDP) is a panel of inbred rat strains, which combines two recombinant inbred panels (the HXB/BXH, 30 strains; the LEXF/FXLE, 34 strains and 35 more strains of inbred rats which were selected for genetic diversity, based on their fully sequenced genomes and/or thorough genotyping). The genetic diversity and statistical power of this panel for mapping studies rivals or surpasses currently available panels in mouse. The genetic stability of this panel makes it particularly suitable for collection of high-throughput omics data as relevant technology becomes available for engaging in truly integrative systems biology. The PhenoGen website ( http://phenogen.org ) is the repository for the initial transcriptome data, making the raw data, the processed data, and the analysis results, e.g., organ-specific protein coding and noncoding transcripts, isoform analysis, expression quantitative trait loci, and co-expression networks, available to the research public. The data sets and tools being developed will complement current efforts to analyze the human transcriptome and its genetic controls (the Genotype-Tissue Expression Project (GTEx)) and allow for dissection of genetic networks that predispose to particular phenotypes and gene-by-environment interactions that are difficult or even impossible to study in humans. The HRDP is an essential population for exploring truly integrative systems genetics.


Subject(s)
Genetic Variation , Rats, Inbred Strains/genetics , Systems Biology/methods , Animals , Chimera/genetics , Gene Regulatory Networks , Humans , Models, Animal , Quantitative Trait Loci , Rats , Software , Whole Genome Sequencing
17.
Alcohol Clin Exp Res ; 42(12): 2280, 2018 12.
Article in English | MEDLINE | ID: mdl-30332716
18.
BMC Genomics ; 19(1): 639, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157779

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that bind messenger RNAs and promote their degradation or repress their translation. There is increasing evidence of miRNAs playing an important role in alcohol related disorders. However, the role of miRNAs as mediators of the genetic effect on alcohol phenotypes is not fully understood. We conducted a high-throughput sequencing study to measure miRNA expression levels in alcohol naïve animals in the LXS panel of recombinant inbred (RI) mouse strains. We then combined the sequencing data with genotype data, microarry gene expression data, and data on alcohol-related behavioral phenotypes such as 'Drinking in the dark', 'Sleep time', and 'Low dose activation' from the same RI panel. SNP-miRNA-gene triplets with strong association within the triplet that were also associated with one of the 4 alcohol phenotypes were selected and a Bayesian network analysis was used to aggregate results into a directed network model. RESULTS: We found several triplets with strong association within the triplet that were also associated with one of the alcohol phenotypes. The Bayesian network analysis found two networks where a miRNA mediates the genetic effect on the alcohol phenotype. The miRNAs were found to influence the expression of protein-coding genes, which in turn influences the quantitative phenotypes. The pathways in which these genes are enriched have been previously associated with alcohol-related traits. CONCLUSION: This work enhances association studies by identifying miRNAs that may be mediating the association between genetic markers (SNPs) and the alcohol phenotypes. It suggests a mechanism of how genetic variants are affecting traits of interest through the modification of miRNA expression.


Subject(s)
Alcohol-Related Disorders/genetics , Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Models, Statistical , Phenotype , Animals , Bayes Theorem , Mice , Polymorphism, Single Nucleotide , Sequence Analysis, RNA
19.
Alcohol Clin Exp Res ; 42(7): 1177-1191, 2018 07.
Article in English | MEDLINE | ID: mdl-29689131

ABSTRACT

BACKGROUND: A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the curve in a recombinant inbred (RI) (HXB/BXH) rat panel. The approach was also used to provide an indication of how EtOH metabolism can impact the normal function of the identified networks. METHODS: RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH RI rats. The reconstructed transcripts were quantitated, and data were used to construct gene coexpression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with EtOH (2 g/kg) for measurement of blood EtOH and acetate levels. These data were used for quantitative trait loci (QTL) analysis of the rate of EtOH disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with EtOH metabolism rates and acetate levels across the rat strains, and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. RESULTS: Of the 658 transcript coexpression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained 2 alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. CONCLUSIONS: We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for coexpression module components.


Subject(s)
Ethanol/metabolism , Liver/metabolism , Metabolic Clearance Rate/physiology , Multifactorial Inheritance/physiology , Systems Biology/methods , Unsupervised Machine Learning , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Animals , Ethanol/administration & dosage , Liver/drug effects , Male , Metabolic Clearance Rate/drug effects , Multifactorial Inheritance/drug effects , Rats , Rats, Inbred BN , Rats, Inbred SHR , Rats, Transgenic
20.
Physiol Genomics ; 50(1): 52-66, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29127223

ABSTRACT

Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.


Subject(s)
Adipose Tissue, Brown/metabolism , Animals , Genetic Predisposition to Disease/genetics , Glucose/metabolism , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Quantitative Trait Loci/genetics , Rats , Rats, Inbred BN , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...