Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJR Am J Roentgenol ; 221(6): 806-816, 2023 12.
Article in English | MEDLINE | ID: mdl-37377358

ABSTRACT

BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.


Subject(s)
Brain Neoplasms , Humans , Infant, Newborn , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Speech/physiology , Retrospective Studies , Wakefulness , Magnetic Resonance Imaging , Language , Brain Mapping/methods
2.
Cancer Res ; 78(14): 3755-3760, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29769199

ABSTRACT

Hyperpolarized (HP) MRI using [1-13C] pyruvate is a novel method that can characterize energy metabolism in the human brain and brain tumors. Here, we present the first dynamically acquired human brain HP 13C metabolic spectra and spatial metabolite maps in cases of both untreated and recurrent tumors. In vivo production of HP lactate from HP pyruvate by tumors was indicative of altered cancer metabolism, whereas production of HP lactate in the entire brain was likely due to baseline metabolism. We correlated our results with standard clinical brain MRI, MRI DCE perfusion, and in one case FDG PET/CT. Our results suggest that HP 13C pyruvate-to-lactate conversion may be a viable metabolic biomarker for assessing tumor response.Significance: Hyperpolarized pyruvate MRI enables metabolic imaging in the brain and can be a quantitative biomarker for active tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3755/F1.large.jpg Cancer Res; 78(14); 3755-60. ©2018 AACR.


Subject(s)
Brain Neoplasms/metabolism , Carbon Isotopes/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Biomarkers, Tumor/metabolism , Brain/metabolism , Humans , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/metabolism
3.
FASEB J ; 20(14): 2553-5, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17077287

ABSTRACT

Neural precursor cells provide an expandable source of neurons and glia for basic and translational applications. However, little progress has been made in directing naive neural precursors toward specific neuronal fates such as midbrain dopamine (DA) neurons. We have recently demonstrated that transgenic expression of the nuclear orphan receptor Nurr1 is sufficient to drive dopaminergic differentiation of forebrain embryonic rat neural precursors in vitro. However, Nurr1-induced DA neurons exhibit immature neuronal morphologies and functional properties and are unable to induce behavioral recovery in rodent models of Parkinson's disease (PD). Here, we report on the identification of key genetic factors that drive morphological and functional differentiation of Nurr1-derived DA neurons. We show that coexpression of Nurr1, Bcl-XL, and Sonic hedgehog (SHH) or Nurr1 and the proneural bHLH factor Mash1 is sufficient to drive naive rat forebrain precursors into neurons exhibiting the biochemical, electrophysiological, and functional properties of DA neuron in vitro. On transplantation into the striatum of Parkinsonian rats, precursor cells engineered with Nurr1/SHH/Bcl-XL or Nurr1/Mash1 survived in vivo and differentiated into mature DA neurons that can reverse the behavioral deficits in the grafted animals.


Subject(s)
DNA-Binding Proteins/metabolism , Dopamine/metabolism , Neurons/drug effects , Neurons/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/cytology , Cell Differentiation/physiology , Cell Transplantation/methods , Cells, Cultured , Cerebral Cortex/cytology , Female , Gene Expression Regulation , Hedgehog Proteins/metabolism , Neurons/cytology , Nuclear Receptor Subfamily 4, Group A, Member 2 , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Rats , Rats, Sprague-Dawley , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...