Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 336, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172244

ABSTRACT

Chiral perovskite nanoparticles and films are promising for integration in emerging spintronic and optoelectronic technologies, yet few design rules exist to guide the development of chiral material properties. The chemical space of potential building blocks for these nanostructures is vast, and the mechanisms through which organic ligands can impart chirality to the inorganic perovskite lattice are not well understood. In this work, we investigate how the properties of chiral ammonium ligands, the most common organic ligand type used with perovskites, affect the circular dichroism of strongly quantum confined CsPbBr3 nanocrystals. We show that aromatic ammonium ligands with stronger electron-donating groups lead to higher-intensity circular dichroism associated with the lowest-energy excitonic transition of the perovskite nanocrystal. We argue that this behavior is best explained by a modulation of the exciton wavefunction overlap between the nanocrystal and the organic ligand, as the functional groups on the ligand can shift electron density toward the organic species-perovskite lattice interface to increase the imprinting.

2.
Nanoscale ; 15(5): 2143-2151, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36633325

ABSTRACT

Chiral metal halide perovskites have garnered substantial interest because of their promising properties for application in optoelectronics and spintronics. Understanding the mechanism of chiral imprinting is paramount for optimizing their utility. To elucidate the nature of the underlying chiral imprinting mechanism, we investigated how the circular dichroism (CD) intensity varies with nanoparticle size for quantum confined sizes of colloidal CsPbBr3 perovskite nanoparticles (NPs) capped by chiral ß-methylphenethylammonium bromide ligands. We find that the CD intensity decreases strongly with increasing NP size, which, along with the shape of the CD spectra, points to electronic interactions between ligand and NP as the dominant mechanism of chiral imprinting in smaller NPs. We observe that as the NP size increases and crosses the quantum confinement threshold, the dominant mechanism of chirality transfer switches and is dominated by surfaces effects, e.g., structural distortions. These findings provide a benchmark for quantitative models of chiral imprinting.

3.
J Infect Dis ; 224(12 Suppl 2): S788-S791, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34528685

ABSTRACT

Typhoid is endemic in many countries in South Asia and sub-Saharan Africa. The high burden of this age-old, preventable disease exacerbates constraints on the health systems of these countries. Currently, most patients are treated effectively in the community or outpatient departments, but with rising antimicrobial resistance and the dearth of novel antimicrobials in the horizon, we risk losing our primary defense against typhoid. Extensively drug-resistant Salmonella Typhi is spreading, and azithromycin is the last oral drug to continue treating typhoid in the community. With increasing azithromycin resistance, emergence of pan-oral drug resistant Salmonella Typhi is imminent. The high burden of typhoid is also an underlying cause of the unnecessary use of antimicrobials. In addition to implementing water sanitation and hygiene interventions to prevent typhoid, it is imperative to rapidly roll out typhoid conjugate vaccines in endemic countries. This will not only reduce the burden of typhoid but will also help interrupt the trend of increasing antimicrobial resistance.


Subject(s)
Salmonella typhi/drug effects , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines , Vaccines, Conjugate/administration & dosage , Drug Resistance, Bacterial/drug effects , Humans , Typhoid Fever/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...