Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021059

ABSTRACT

Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors. Here, we screened 297 U. maydis effector candidates for their ability to interact with maize TPL protein RAMOSA 1 ENHANCER LOCUS 2 LIKE 2 (RELK2) and their ability to induce auxin signaling and thereby identified three novel TPL-interacting protein effectors (Tip6, Tip7, and Tip8). Structural modeling and mutational analysis allowed the identification of TPL-interaction motifs of Tip6 and Tip7. In planta interaction between Tip6 and Tip7 with RELK2 occurs mainly in nuclear compartments, whereas Tip8 colocalizes with RELK2 in a compartment outside the nucleus. Overexpression of Tip8 in nonhost plants leads to cell death, indicating recognition of the effector or its activity. By performing infection assays with single and multideletion mutants of U. maydis, we demonstrate a positive role of Tip6 and Tip7 in U. maydis virulence. Transcriptional profiling of maize leaves infected with Tip effector mutants in comparison with SG200 strain suggests Tip effector activities are not merely redundant.

2.
Biomed Res Int ; 2023: 5100400, 2023.
Article in English | MEDLINE | ID: mdl-37250750

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) has evolved resistance even against the last resort ß-lactam antibiotics. This is because of the acquisition of an additional penicillin-binding protein 2a (PBP2a) which is a resistance determinant in MRSA. Currently, available PBP2a inhibitors are ineffective against life-threatening and fatal infections caused by microorganisms. Therefore, there is an urgent need to screen natural compounds that could overpass the resistance issue alone or in combination with antibacterial drugs. We studied the interactions of different phytochemicals with PBP2a so that crosslinking of peptidoglycans could be inhibited. In structure-based drug designing, in silico approach plays a key role in determining phytochemical interactions with PBP2a. In this study, a total of 284 antimicrobial phytochemicals were screened using the molecular docking approach. The binding affinity of methicillin, -11.241 kcal/mol, was used as the threshold value. The phytochemicals having binding affinities with PBP2a stronger than methicillin were identified, and the drug-likeness properties and toxicities of the screened phytochemicals were calculated. Out of the multiple phytochemicals screened, nine were found as good inhibitors to be PBP2a, among which cyanidin, tetrandrine, cyclomorusin, lipomycin, and morusin showed strong binding potential with the receptor protein. These best-selected phytochemicals were also docked to the allosteric site of PBP2a, and most of the compounds revealed strong interactions with the allosteric site. These compounds were safe to be used as drugs because they did not show any toxicity and had good bioactivity scores. Cyanidin had the highest binding affinity (S-score of -16.061 kcal/mol) with PBP2a and with high gastrointestinal (GI) absorption. Our findings suggest that cyanidin can be used as a drug against MRSA infection either in purified form or that its structure can lead to the development of more potent anti-MRSA medicines. However, experimental studies are required to evaluate the inhibitory potential of these phytochemicals against MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Methicillin/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Penicillin-Binding Proteins , Phytochemicals/pharmacology , Bacterial Proteins , Microbial Sensitivity Tests
3.
Int J Phytoremediation ; 21(6): 509-518, 2019.
Article in English | MEDLINE | ID: mdl-30924354

ABSTRACT

In this study, column-scale laboratory experiments were performed to evaluate the arsenic (As) removal efficiency of different agricultural biowastes-derived biosorbents (orange peel, banana peel, rice husk) and biochar, using As-containing solutions and As-contaminated groundwater. All the biosorbents and biochar efficiently removed (50-100%) As from groundwater (drinking well water). Arsenic removal potential of biosorbents varied with their type, As concentration, contact time, and As solution type. After 1 h, the As removal efficiency of all the biosorbents was 100%, 100% and 90% for 5, 10, and 50 µg/L As-contaminated groundwater samples, respectively; and it was 50%, 90%, and 90% for 10, 50, and 100 µg/L As solutions, respectively. After 2 h, all the biosorbents and biochar removed 100% As from aqueous solutions except for 100 µg/L As solution. This showed that the biosorbents and biochar could be used to reduce As contents below the WHO safe limit of As in drinking water (10 µg/L). Fourier transform infrared (FTIR) spectroscopy indicated possible role of various surface functional moieties on biosorbents/biochar surface to remove As from solution and groundwater. This pilot-scale column study highlights that the biosorbents and biochar can be effectively used in remediation of As-contaminated groundwater, although the soluble salts in groundwater increased after treatment with biochar.


Subject(s)
Arsenic , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Purification , Adsorption , Biodegradation, Environmental , Charcoal
4.
Environ Sci Pollut Res Int ; 26(20): 20018-20029, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29429111

ABSTRACT

Currently, several news channels and research publications have highlighted the dilemma of arsenic (As)-contaminated groundwater in Pakistan. However, there is lack of data regarding groundwater As content of various areas in Pakistan. The present study evaluated As contamination and associated health risks in previously unexplored groundwater of Hasilpur-Pakistan. Total of 61 groundwater samples were collected from different areas (rural and urban), sources (electric pump, hand pump, and tubewell) and depths (35-430 ft or 11-131 m). The water samples were analyzed for As level and other parameters such as pH, electrical conductivity, total dissolved solids, cations, and anions. It was found that 41% (25 out of 61) water samples contained As (≥ 5 µg/L). Out of 25 As-contaminated water samples, 13 water samples exceeded the permissible level of WHO (10 µg/L). High As contents have been found in tubewell samples and at high sampling depths (> 300 ft). The major As-contaminated groundwater in Hasilpur is found in urban areas. Furthermore, health risk and cancer risk due to As contamination were also assessed with respect to average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR). The values of HQ and CR of As in Hasilpur were up to 58 and 0.00231, respectively. Multivariate analysis revealed a positive correlation between groundwater As contents, pH, and depth in Hasilpur. The current study proposed the proper monitoring and management of well water in Hasilpur to minimize the As-associated health hazards.


Subject(s)
Arsenic/analysis , Groundwater/analysis , Water Pollutants, Chemical/analysis , Dietary Exposure , Drinking Water/chemistry , Groundwater/chemistry , Humans , Hydrogen-Ion Concentration , Multivariate Analysis , Pakistan , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...