Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(8): 4485-4499, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36787417

ABSTRACT

Lead-free metal halide double perovskites are gaining increasing attention for optoelectronic applications. Specifically, doping metal halide double perovskites using transition metals enables broadband tailorability of the optical bandgap for these emerging semiconducting materials. One candidate material is Mn(II)-doped Cs2NaBiCl6, but the nature of Mn(II) insertion on chemical structure is poorly understood due to low Mn loading. It is critical to determine the atomic-level structure at the site of Mn(II) incorporation in doped perovskites to better understand the structure-property relationships in these materials and thus to advance their applicability to optoelectronic applications. Magnetic resonance spectroscopy is uniquely qualified to address this, and thus a comprehensive three-pronged strategy, involving solid-state nuclear magnetic resonance (NMR), high-field dynamic nuclear polarization (DNP), and electron paramagnetic resonance (EPR) spectroscopies, is used to identify the location of Mn(II) insertion in Cs2NaBiCl6. Multinuclear (23Na, 35Cl, 133Cs, and 209Bi) one-dimensional (1D) magnetic resonance spectra reveal a low level of Mn(II) incorporation, with select spins affected by paramagnetic relaxation enhancement (PRE) induced by Mn(II) neighbors. EPR measurements confirm the oxidation state, octahedral symmetry, and low doping levels of the Mn(II) centers. Complementary EPR and NMR measurements confirm that the cubic structure is maintained with Mn(II) incorporation at room temperature, but the structure deviates slightly from cubic symmetry at low temperatures (<30 K). HYperfine Sublevel CORrelation (HYSCORE) EPR spectroscopy explores the electron-nuclear correlations of Mn(II) with 23Na, 133Cs, and 35Cl. The absence of 209Bi correlations suggests that Bi centers are replaced by Mn(II). Endogenous DNP NMR measurements from Mn(II) → 133Cs (<30 K) reveal that the solid effect is the dominant mechanism for DNP transfer and supports that Mn(II) is homogeneously distributed within the double-perovskite structure.

2.
Angew Chem Int Ed Engl ; 61(37): e202207316, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35785426

ABSTRACT

Aluminas are strategic materials used in many major industrial processes, either as catalyst supports or as catalysts in their own right. The transition alumina γ-Al2 O3 is a privileged support, whose reactivity can be tuned by thermal activation. This study provides a qualitative and quantitative assessment of the hydroxyl groups present on the surface of γ-Al2 O3 at three different dehydroxylation temperatures. The principal [AlOH] configurations are identified and described in unprecedented detail at the molecular level. The structures were established by combining information from high-field 1 H and 27 Al solid-state NMR, IR spectroscopy and DFT calculations, as well as selective reactivity studies. Finally, the relationship between the hydroxyl structures and the molecular-level structures of the active sites in catalytic alkane metathesis is discussed.

3.
J Am Chem Soc ; 143(3): 1562-1569, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33439016

ABSTRACT

Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.

4.
J Am Chem Soc ; 143(4): 1968-1983, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33491456

ABSTRACT

Phosphorus-modified siliceous zeolites, or P-zeosils, catalyze the selective dehydration of biomass derivatives to platform chemicals such as p-xylene and 1,3-butadiene. Water generated during these reactions is a critical factor in catalytic activity, but the effects of hydrolysis on the structure, acidity, and distribution of the active sites are largely unknown. In this study, the P-sites in an all-silica self-pillared pentasil (P-SPP) with a low P-loading (Si/P = 27) were identified by solid-state 31P NMR using frequency-selective detection. This technique resolves overlapping signals for P-sites that are covalently bound to the solid phase, as well as oligomers confined in the zeolite but not attached to the zeolite. Dynamic Nuclear Polarization provides the sensitivity necessary to conduct 29Si-filtered 31P detection and 31P-31P correlation experiments. The aforementioned techniques allow us to distinguish sites with P-O-Si linkages from those with P-O-P linkages. The spectra reveal a previously unappreciated diversity of P-sites, including evidence for surface-bound oligomers. In the dry P-zeosil, essentially all P-sites are anchored to the solid phase, including mononuclear sites and dinuclear sites containing the [Si-O-P-O-P-O-Si] motif. The fully-condensed sites evolve rapidly when exposed to humidity, even at room temperature. Partially hydrolyzed species have a wide range of acidities, inferred from their calculated LUMO energies. Initial cleavage of some P-O-Si linkages results in an evolving mixture of surface-bound mono- and oligonuclear P-sites with increased acidity. Subsequent P-O-P cleavage leads to a decrease in acidity as the P-sites are eventually converted to H3PO4. The ability to identify acidic sites in P-zeosils and to describe their structure and stability will play an important role in controlling the activity of microporous catalysts by regulating their water content.

5.
J Phys Chem Lett ; 11(21): 9195-9202, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33058676

ABSTRACT

Dynamic Nuclear Polarization (DNP) is a sensitivity enhancing technique for Nuclear Magnetic Resonance. A recent discovery of Overhauser Effect (OE) DNP in insulating systems under cryogenic conditions using 1,3-bisdiphenylene-2-phenylallyl (BDPA) as the polarizing agent (PA) has caught attention due to its promising DNP performance at a high magnetic field and under fast magic angle spinning conditions. However, the mechanism of OE in insulating-solids/BDPA is unclear. We present an alternative explanation that the dominant underlying DNP mechanism of BDPA is Thermal Mixing (TM). This is ascertained with the discovery that TM effect is enhanced by multi-electron spin coupling, which is corroborated by an asymmetric electron paramagnetic resonance line shape signifying the coexistence of clustered and isolated BDPA species, and by hyperpolarized electron spin populations giving rise to an electron spin polarization gradient which are characteristic signatures of TM DNP. Finally, quantum mechanical simulations using spatially asymmetrically coupled three electron spins and a nuclear spin demonstrate that triple-flip DNP, with hyperfine fluctuations turned off, can yield the 1H DNP profile as observed with BDPA. Clarifying the DNP mechanism is critical to develop design principles for optimizing the PA for achieving optimal DNP efficiency.

6.
Angew Chem Int Ed Engl ; 59(32): 13260-13266, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32413202

ABSTRACT

Phosphorus-modified all-silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well-defined sites, we report the incorporation of Brønsted acidity to metal-organic frameworks with the UiO-66 topology, achieved by attaching phosphonic acid to the 1,4-benzenedicarboxylate ligand and using it to form UiO-66-PO3 H2 by post-synthesis modification. Characterization reveals that UiO-66-PO3 H2 retains stability similar to UiO-66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra-decyclization of 2-methyltetrahydrofuran (2-MTHF). For the later reaction, the reported catalyst exhibits site-time yields and selectivity approaching that of phosphoric acid on all-silica zeolites. Using solid-state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.

7.
J Phys Chem Lett ; 11(9): 3718-3723, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32315195

ABSTRACT

Trityl-OX063 is a narrow-line, water-soluble, and biocompatible polarizing agent, widely used for dynamic nuclear polarization (DNP) amplified NMR of 13C, but not of the abundant 1H nuclear spin, for which the ineffective solid effect (SE) is expected to be operational. Surprisingly, we observed a crossover from SE to thermal mixing (TM) DNP of 1H with increasing Trityl-OX063 concentration at 7 T. We experimentally ascertained diagnostic signatures of TM-DNP that have only been theoretically predicted: (i) an electron paramagnetic resonance (EPR) spectrum that maintains an asymmetrically broadened EPR line from strong e-e couplings and (ii) hyperpolarization, i.e., cooling of select electron-spin populations, manifested in a characteristic pump-probe electron double-resonance spectrum under DNP conditions. Low microwave power requirements, high polarization transfer rates, and efficient DNP at high magnetic fields are the key benefits of TM-DNP.

8.
J Am Chem Soc ; 142(15): 7055-7065, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32243146

ABSTRACT

The usual understanding in polymer electrolyte design is that an increase in the polymer dielectric constant results in reduced ion aggregation and therefore increased ionic conductivity. We demonstrate here that in a class of polymers with extensive metal-ligand coordination and tunable dielectric properties, the extent of ionic aggregation is delinked from the ionic conductivity. The polymer systems considered here comprise ether, butadiene, and siloxane backbones with grafted imidazole side-chains, with dissolved Li+, Cu2+, or Zn2+ salts. The nature of ion aggregation is probed using a combination of X-ray scattering, electron paramagnetic resonance (in the case where the metal cation is Cu2+), and polymer field theory-based simulations. Polymers with less polar backbones (butadiene and siloxane) show stronger ion aggregation in X-ray scattering compared to those with the more polar ether backbone. The Tg-normalized ionic conductivities were however unaffected by the extent of aggregation. The results are explained on the basis of simulations which indicate that polymer backbone polarity does impact the microstructure and the extent of ion aggregation but does not impact percolation, leading to similar ionic conductivity regardless of the extent of ion aggregation. The results emphasize the ability to design for low polymer Tg through backbone modulation, separately from controlling ion-polymer interaction dynamics through ligand choice.

SELECTION OF CITATIONS
SEARCH DETAIL
...