Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(6): 605-615, 2024 Jun 20.
Article in Japanese | MEDLINE | ID: mdl-38763757

ABSTRACT

PURPOSE: The aim of this study was to validate the potential of substituting an observer in a paired comparison with a deep-learning observer. METHODS: Phantom images were obtained using computed tomography. Imaging conditions included a standard setting of 120 kVp and 200 mA, with tube current variations ranging from 160 mA, 120 mA, 80 mA, 40 mA, and 20 mA, resulting in six different imaging conditions. Fourteen radiologic technologists with >10 years of experience conducted pairwise comparisons using Ura's method. After training, VGG16 and VGG19 models were combined to form deep learning models, which were then evaluated for accuracy, recall, precision, specificity, and F1value. The validation results were used as the standard, and the results of the average degree of preference and significance tests between images were compared to the standard if the results of deep learning were incorporated. RESULTS: The average accuracy of the deep learning model was 82%, with a maximum difference of 0.13 from the standard regarding the average degree of preference, a minimum difference of 0, and an average difference of 0.05. Significant differences were observed in the test results when replacing human observers with AI counterparts for image pairs with tube currents of 160 mA vs. 120 mA and 200 mA vs. 160 mA. CONCLUSION: In paired comparisons with a limited phantom (7-point noise evaluation), the potential use of deep learning was suggested as one of the observers.


Subject(s)
Deep Learning , Phantoms, Imaging , Humans , Tomography, X-Ray Computed/methods , Technology, Radiologic/education
2.
Article in Japanese | MEDLINE | ID: mdl-38777768

ABSTRACT

PURPOSE: To validate the effects of subject position on single energy metal artifact reduction (SEMAR) of a reverse shoulder prosthesis using computed tomography (CT). METHODS: A water phantom with a reverse shoulder prosthesis was scanned at four positions on the XY plane of the CT gantry (on-center, 50 mm, 100 mm, and 150 mm from on-center in the negative direction of the X axis, respectively). We obtained images with and without SEMAR. The artifact index (AI) was measured via physical assessment. Scheffé's (Ura) paired comparison methods were performed with the amount of metal artifact by ten radiological technologists via visual assessment. RESULTS: The AI was significantly reduced when using SEMAR. As the phantom moved away from the on-center position, the AI increased, and metal artifacts increased in Scheffé's methods. CONCLUSION: SEMAR reduces metal artifacts of a reverse shoulder prosthesis, but metal artifacts may increase as the subject position moves away from the on-center position.

3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(5): 510-518, 2024 May 20.
Article in Japanese | MEDLINE | ID: mdl-38462509

ABSTRACT

PURPOSE: To investigate whether deep learning with high-pass filtering can be used to effectively reduce motion artifacts in magnetic resonance (MR) images of the liver. METHODS: The subjects were 69 patients who underwent liver MR examination at our hospital. Simulated motion artifact images (SMAIs) were created from non-artifact images (NAIs) and used for deep learning. Structural similarity index measure (SSIM) and contrast ratio (CR) were used to verify the effect of reducing motion artifacts in motion artifact reduction image (MARI) output from the obtained deep learning model. In the visual assessment, reduction of motion artifacts and image sharpness were evaluated between motion artifact images (MAIs) and MARIs. RESULTS: The SSIM values were 0.882 on the MARIs and 0.869 on the SMAIs. There was no statistically significant difference in CR between NAIs and MARIs. The visual assessment showed that MARIs had reduced motion artifacts and improved sharpness compared to MAIs. CONCLUSION: The learning model in this study is indicated to be reduced motion artifacts without decreasing the sharpness of liver MR images.


Subject(s)
Artifacts , Deep Learning , Liver , Magnetic Resonance Imaging , Motion , Humans , Magnetic Resonance Imaging/methods , Liver/diagnostic imaging , Female , Male , Middle Aged , Aged , Adult , Image Processing, Computer-Assisted/methods , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...