Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(12): 20737-20749, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224811

ABSTRACT

III-Nitride semiconductors are promising materials for on-chip integrated photonics. They provide a wide transparency window from the ultra-violet to the infrared that can be exploited for second-order nonlinear conversions. Here we demonstrate a photonics platform based on epitaxial GaN-on-insulator on silicon. The transfer of the epi-material on SiO2 is achieved through wafer bonding. We show that quality factors up to 230 000 can be achieved with this platform at telecommunication wavelengths. Resonant second harmonic generation is demonstrated with a continuous wave conversion efficiency of 0.24%/W.

2.
Opt Express ; 29(14): 21280-21289, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265918

ABSTRACT

Microdisks fabricated with III-nitride materials grown on GaN substrates are demonstrated, taking advantage of the high material quality of homoepitaxial films and advanced micro-fabrication processes. The epitaxial structure consists of InGaN/GaN multi-quantum wells (MQWs) sandwiched between AlGaN/GaN and InAlN/GaN superlattices as cladding layers for optical confinement. Due to lattice-matched growth with low dislocations, an internal quantum efficiency of ∼40% is attained, while the sidewalls of the etched 8 µm-diameter microdisks patterned by microsphere lithography are optically smooth to promote the formation of whispering-gallery modes (WGMs) within the circular optical cavities. Optically pumped lasing with low threshold of ∼5.2 mJ/cm2 and quality (Q) factor of ∼3000 at the dominant lasing wavelength of 436.8 nm has been observed. The microdisks also support electroluminescent operation, demonstrating WGMs consistent with the photoluminescence spectra and with finite-difference time-domain (FDTD) simulations.

3.
Opt Express ; 27(8): 11800-11808, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053020

ABSTRACT

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm2 output power density at 20 mA from such microrings with diameters of 30 to 50 µm. The first steps towards achieving an integrated photonic circuit are demonstrated.

4.
Nature ; 555(7695): 216-219, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29516997

ABSTRACT

The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis ß-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis ß-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

SELECTION OF CITATIONS
SEARCH DETAIL
...