Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38669472

ABSTRACT

In the last decade, technology developed by people with diabetes and their loved ones has added to the options for diabetes management. One such example is that of automated insulin delivery (AID) algorithms, which were created and shared as open source by people living with type 1 diabetes (T1D) years before commercial systems were first available. Now, numerous options for commercial systems exist in some countries, yet tens of thousands of people with diabetes are still choosing Open-Source AID (OS-AID), previously called "do-it-yourself" (DIY) systems, which are noncommercial versions of these open-source AID systems. In this article, we provide point and counterpoint perspectives regarding (1) safety and efficacy, (2) regulation and support, (3) user choice and flexibility, (4) access and affordability, and (5) patient and provider education, for open source and commercial AID systems. The perspectives reflected here include that of a person living with T1D who uses and has developed OS-AID systems, a physician-researcher based in the United States who conducts clinical trials to support development of commercial AID systems and supports people with diabetes using all types of AID, and an endocrinologist with T1D who uses both systems and treats people with diabetes using all types of AID.

2.
J Diabetes Sci Technol ; 13(4): 645-663, 2019 07.
Article in English | MEDLINE | ID: mdl-31130007

ABSTRACT

Using a continuous glucose monitor (CGM) improves glycemic control in patients with type 1 diabetes. The ambulatory glucose profile (AGP) has been recommended as a standard method for reporting CGM data. However, in recently developed automated insulin delivery (AID) systems, a standard format for reporting data has not yet been developed. Instead, reports are specific to each system being used. Currently, the only FDA approved AID system is a hybrid closed-loop insulin pump. In these systems, the patient is still required to announce a meal, respond to alerts, and keep the system in automated insulin delivery. The integrated pump and sensor information provides insights into how the system is performing, and how to make changes to tunable parameters, such as carbohydrate to insulin ratios. The reports also offer a window into human behavior related to performing diabetes tasks, responding to alarms, reasons for exiting HCL, and how glycemic goals are being met. This article reviews the pump and CGM data provided by several of the current closed-loop systems with a focus on systems that are currently approved in the United States (MiniMed™ 670G, Tandem Basal:IQ) and those used by patients using do-it-yourself systems. A step-wise approach to reviewing the nuances of these systems is provided. The comparison may reinforce the importance of the continued need for streamlining a standard report for providers to be able to interpret the CGM data of these systems.


Subject(s)
Blood Glucose Self-Monitoring/standards , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Insulin Infusion Systems , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Research Design/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...