Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mov Disord ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962960

ABSTRACT

BACKGROUND: Patients in late-stage Parkinson's disease (PDLS) are caregiver-dependent, have low quality of life, and higher healthcare costs. OBJECTIVE: To estimate the prevalence of PDLS patients in the current US healthcare system. METHODS: We downloaded the 2010-2022 data from the TriNetX Diamond claims network that consists of 92 US healthcare sites. PD was identified using standard diagnosis codes, and PDLS was identified by the usage of wheelchair dependence, personal care assistance, and/or presence of diagnoses of dementia. Age of PDLS identification and survival information were obtained and stratified by demographic and the disability subgroups. RESULTS: We identified 1,031,377 PD patients in the TriNetX database. Of these, 18.8% fitted our definition of PDLS (n = 194,297), and 10.2% met two or more late-stage criteria. Among all PDLS, the mean age of PDLS identification was 78.1 (±7.7) years, and 49% were already reported as deceased. PDLS patients were predominantly male (58.5%) with similar distribution across PDLS subgroups. The majority did not have race (71%) or ethnicity (69%) information, but for the available information >90% (n = 53,162) were White, 8.2% (n = 5121) Hispanic/Latino, 7.8% (n = 4557) Black, and <0.01% (n = 408) Asian. Of the PDLS cohort, 71.6% identified with dementia, 12.9% had personal care assistance, and 4.8% were wheelchair-bound. CONCLUSIONS: Late-stage patients are a significant part of the PD landscape in the current US healthcare system, and largely missed by traditional motor-based disability staging. It is imperative to include this population as a clinical, social, and research priority. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
J Neurophysiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985938

ABSTRACT

Bradykinesia is a term describing several manifestations of movement disruption caused by Parkinson's disease (PD), including movement slowing, amplitude reduction, and gradual decrease of speed and amplitude over multiple repetitions of the same movement. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves bradykinesia in patients with PD. We examined the effect of DBS on specific components of bradykinesia when applied at two locations within the STN, using signal processing techniques to identify the time course of amplitude and frequency of repeated hand pronation-supination movements performed by participants with and without PD. Stimulation at either location increased movement amplitude, increased frequency, and decreased variability, though not to the range observed in the control group. Amplitude and frequency showed decrement within trials, which was similar in PD and control groups and did not change with DBS. Decrement across trials, by contrast, differed between PD and control groups, and was reduced by stimulation. We conclude that DBS improves specific aspects of movement that are disrupted by PD, whereas it does not affect short-term decrement that could reflect muscular fatigue.

3.
Mov Disord ; 36(3): 662-671, 2021 03.
Article in English | MEDLINE | ID: mdl-33211330

ABSTRACT

BACKGROUND: Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS: We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS: Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION: Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Globus Pallidus , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy
4.
Oper Neurosurg (Hagerstown) ; 19(3): 234-240, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32259239

ABSTRACT

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE: To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS: A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS: Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION: STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Aged , Case-Control Studies , Humans , Parkinson Disease/therapy , Retrospective Studies , Treatment Outcome
5.
J Parkinsons Dis ; 10(2): 729-741, 2020.
Article in English | MEDLINE | ID: mdl-32176653

ABSTRACT

BACKGROUND: Understanding the regional needs and available healthcare resources to treat Parkinson's disease (PD) is essential to plan appropriate future priorities. The International Parkinson and Movement Disorder Society (MDS) Task Force for the Middle East was established to raise awareness and promote education across the region on PD and other movement disorders. Broadly, the task force encompasses the countries of the Middle East but has included North Africa and South Asia as well (MENASA). OBJECTIVE: To create a list of needs and priorities in the advancement of PD in MENASA countries based on consensuses generated by the MDS task force for the Middle East. METHODS: A Strengths Weaknesses-Opportunities-Threats (SWOT) analysis was conducted by the task force members to generate consensus about PD care this region. RESULTS: Eight overarching principles emerged for the consensus statement on current needs: more movement disorders specialists, multidisciplinary care, accurate epidemiologic data, educational programs, availability of drugs, and availability of more advanced therapy, enhanced health care resources and infrastructure, and greater levels of awareness within the general population and among health care professionals. CONCLUSION: This pilot study sheds light on unmet needs for providing care to people with PD in the MENASA region. These data offer directions on priorities to increase awareness of PD, to develop better infrastructure for research and management of PD, to foster healthcare policy discussions for PD and to provide educational opportunities within these countries.


Subject(s)
Consensus , Movement Disorders/therapy , Needs Assessment , Neurologists , Parkinson Disease , Societies, Medical , Africa, Northern , Asia , Humans , Middle East , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Pilot Projects
6.
Curr Treat Options Neurol ; 17(3): 339, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25704239

ABSTRACT

OPINION STATEMENT: Dystonia is a movement disorder caused by diverse etiologies. Its treatment in children is particularly challenging due to the complexity of the development of the nervous system from birth to young adulthood. The treatment options of childhood dystonia include several oral pharmaceutical agents, botulinum toxin injections, and deep brain stimulation (DBS) therapy. The choice of drug therapy relies on the suspected etiology of the dystonia and the adverse effect profile of the drugs. Dystonic syndromes with known etiologies may require specific interventions, but most dystonias are treated by trying serially a handful of medications starting with those with the best risk/benefit profile. In conjunction to drug therapy, botulinum toxin injections may be used to target a problematic group dystonic muscles. The maximal botulinum toxin dose is limited by the weight of the child, therefore limiting the number of the muscles amenable to such treatment. When drugs and botulinum toxin injections fail to control the child's disabling dystonia, DBS therapy may be offered as a last remedy. Delivering optimal DBS therapy to children with dystonia requires a multidisciplinary team of experienced pediatric neurosurgeons, neurologists, and nurses to select adequate candidates, perform this delicate stereotactic procedure, and optimize DBS delivery. Even in the best hands, the response of childhood dystonia to DBS therapy varies greatly. Future therapy of childhood dystonia will parallel the advancement of knowledge of the pathophysiology of dystonic syndromes and the development of clinical and research tools for their study.

7.
Ann Neurol ; 76(3): 393-402, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25043598

ABSTRACT

OBJECTIVE: We evaluated the efficacy of the potent antioxidant C3 to salvage nigrostriatal neuronal function after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure in nonhuman primates. C3 is a first-in-class functionalized water-soluble fullerene that reduces oxygen radical species associated with neurodegeneration in in vitro studies. However, C3 has not been evaluated as a neuroprotective agent in a Parkinson model in vivo. METHODS: Macaque fascicularis monkeys were used in a double-blind, placebo-controlled study design. MPTP-lesioned primates were given systemic C3 (n = 8) or placebo (n = 7) for 2 months starting 1 week after MPTP. Outcomes included in vivo behavioral measures of motor parkinsonism using a validated nonhuman primate rating scale, kinematic analyses of peak upper extremity velocity, positron emission tomography imaging of 6-[(18) F]fluorodopa (FD; reflects dopa decarboxylase) and [(11) C]dihydrotetrabenazine (DTBZ; reflects vesicular monoamine transporter type 2), ex vivo quantification of striatal dopamine, and stereologic counts of tyrosine hydroxylase-immunostained neurons in substantia nigra. RESULTS: After 2 months, C3 -treated monkeys had significantly improved parkinsonian motor ratings, greater striatal FD and DTBZ uptake, and higher striatal dopamine levels. None of the C3 -treated animals developed any toxicity. INTERPRETATION: Systemic treatment with C3 reduced striatal injury and improved motor function despite administration after the MPTP injury process had begun. These data strongly support further development of C3 as a promising therapeutic agent for Parkinson disease.


Subject(s)
Behavior, Animal/drug effects , Carboxylic Acids/pharmacology , Neostriatum/drug effects , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Carboxylic Acids/administration & dosage , Disease Models, Animal , Dopamine/metabolism , Double-Blind Method , Macaca fascicularis , Male , Neostriatum/injuries , Neostriatum/metabolism , Neuroprotective Agents/administration & dosage , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Placebos , Positron-Emission Tomography/methods , Random Allocation , Substantia Nigra/drug effects , Substantia Nigra/injuries , Substantia Nigra/metabolism , Treatment Outcome
8.
Ann Neurol ; 76(2): 279-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24953991

ABSTRACT

OBJECTIVE: We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3-dimensional brain region and to assign statistical significance after stringent type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS. METHODS: Fifty-one PD participants with STN DBS were evaluated off medication, with DBS off and during unilateral STN DBS with clinically optimized settings. Dependent variables included DBS-induced changes in Unified Parkinson Disease Rating Scale (UPDRS) subscores, kinematic measures of bradykinesia and rigidity, working memory, response inhibition, mood, anxiety, and akathisia. Weighted t tests at each voxel produced p images showing where DBS most significantly affected each dependent variable based on outcomes of participants with nearby DBS. Finally, a permutation test computed the probability that this p image indicated significantly different responses based on stimulation site. RESULTS: Most motor variables improved with DBS anywhere in the STN region, but several motor, cognitive, and affective responses significantly depended on precise location stimulated, with peak p values in superior STN/zona incerta (quantified bradykinesia), dorsal STN (mood, anxiety), and inferior STN/substantia nigra (UPDRS tremor, working memory). INTERPRETATION: Our method identified DBS-induced behavioral changes that depended significantly on DBS site. These results do not support complete functional segregation within STN, because movement improved with DBS throughout, and mood improved with dorsal STN DBS. Rather, findings support functional convergence of motor, cognitive, and limbic information in STN.


Subject(s)
Brain Mapping/methods , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Subthalamic Nucleus/anatomy & histology , Subthalamic Nucleus/physiology , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Treatment Outcome
9.
Ann Neurol ; 74(4): 602-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23686841

ABSTRACT

OBJECTIVE: Development of an effective therapy to slow the inexorable progression of Parkinson disease requires a reliable, objective measurement of disease severity. In the present study, we compare presynaptic positron emission tomography (PET) tracer uptake in the substantia nigra (SN) to cell loss and motor impairment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primates. METHODS: Presynaptic PET tracers 6-[(18)F]-fluorodopa (FD), [(11)C]-2ß-methoxy-3ß-4-fluorophenyltropane (CFT), and [(11)C]-dihydrotetrabenazine (DTBZ) were used to measure specific uptake in the SN and striatum before and after a variable dose of MPTP in nonhuman primates. These in vivo PET-based measures were compared with motor impairment, as well as postmortem tyrosine hydroxylase-positive cell counts and striatal dopamine concentration. RESULTS: We found the specific uptake of both CFT and DTBZ in the SN had a strong, significant correlation with dopaminergic cell counts in the SN (R(2) = 0.77, 0.53, respectively, p < 0.001), but uptake of FD did not. Additionally, both CFT and DTBZ specific uptake in the SN had a linear relationship with motor impairment (rs = -0.77, -0.71, respectively, p < 0.001), but FD uptake did not. INTERPRETATION: Our findings demonstrate that PET-measured binding potentials for CFT and DTBZ for a midbrain volume of interest targeted at the SN provide faithful correlates of nigral neuronal counts across a full range of lesion severity. Because these measures correlate with both nigral cell counts and parkinsonian ratings, we suggest that these SN PET measures are relevant biomarkers of nigrostriatal function.


Subject(s)
MPTP Poisoning/pathology , Mesencephalon/pathology , Neurons/physiology , Positron-Emission Tomography , Substantia Nigra/pathology , Animals , Carbon Isotopes , Disease Models, Animal , Fluorodeoxyglucose F18 , MPTP Poisoning/diagnostic imaging , Macaca mulatta , Magnetic Resonance Imaging , Male , Substantia Nigra/diagnostic imaging , Tetrabenazine/analogs & derivatives
10.
Arch Neurol ; 69(10): 1326-31, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22825369

ABSTRACT

OBJECTIVE: To determine the relative contributions of individual pathologic protein deposits associated with dementia in patients with Parkinson disease (PD). DESIGN: Autopsied patients were analyzed from February 24, 2005, through July 25, 2010, to determine the distribution and severity of individual pathologic protein deposits (α-synuclein, Aß, and tau) using routine protocols for histologic and immunohistochemical analysis and established neuropathologic staging criteria. Clinical data were extracted from an electronic medical record system used for all patients with PD. PATIENTS: Thirty-two consecutive autopsied patients treated at the Washington University Movement Disorders Center who had neuropathologic confirmation of PD and a history of dementia, regardless of the timing of the onset of dementia with respect to motor symptoms. RESULTS: Three pathologic subgroups of dementia associated with PD were identified: (1) predominant synucleinopathy (Braak Lewy body stages 5-6) (12 [38%]), (2) predominant synucleinopathy with Aß deposition (Braak amyloid stages B-C) but minimal or no cortical tau deposition (19 [59%]), and (3) synucleinopathy and Aß deposition with at least moderate neocortical tauopathy (Braak tau stages 5-6; 1 [3%]). Kaplan-Meier and Cox regression analyses revealed that patients with synucleinopathy plus Aß deposition had significantly shorter survival (years from PD onset until death and years from dementia onset until death) than patients with synucleinopathy only. CONCLUSIONS: Dementia associated with PD has 2 major pathologic subgroups: neocortical synucleinopathy and neocortical synucleinopathy with Aß deposition. Alzheimer disease with neocortical Aß and tau deposition does not commonly cause dementia with PD. Furthermore, accumulation of Aß is associated with lower survival rates in PD patients with dementia. Additional studies are needed to prospectively determine the association between α-synuclein and Aß accumulation and the role of Aß in the development and progression of cognitive impairment in PD.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Dementia/metabolism , Dementia/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Autopsy , Brain/pathology , Dementia/complications , Dementia/mortality , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/mortality , Regression Analysis , Retrospective Studies , Statistics, Nonparametric , tau Proteins/metabolism
11.
Exp Neurol ; 237(2): 355-62, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22836146

ABSTRACT

OBJECTIVE: Nigrostriatal reserve refers to the threshold of neuronal injury to dopaminergic cell bodies and their terminal fields required to produce parkinsonian motor deficits. Inferential studies have estimated striatal dopamine reserve to be at least 70%. Knowledge of this threshold is critical for planning interventions to prevent symptom onset or reverse nigrostriatal injury sufficient to restore function in people with Parkinson disease. In this study, we determine the nigrostriatal reserve in a non-human primate model that mimics the motor manifestations of Parkinson disease. METHODS: Fifteen macaque monkeys received unilateral randomized doses of the selective dopaminergic neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We compared blinded validated ratings of parkinsonism to in vitro measures of striatal dopamine and unbiased stereologic counts of nigral neurons after tyrosine hydroxylase immunostaining. RESULTS: The percent of residual cell counts in lesioned nigra correlated linearly with the parkinsonism score at 2 months (r=-0.87, p<0.0001). The parkinsonism score at 2 months correlated linearly with the percent residual striatal dopamine (r=-0.77, p=0.016) followed by a flooring effect once nigral cell loss exceeded 50%. A reduction of about 14 to 23% of nigral neuron counts or 14% to 37% of striatal dopamine was sufficient to induce mild parkinsonism. CONCLUSIONS: The nigral cell body and terminal field injury needed to produce parkinsonian motor manifestations may be much less than previously thought.


Subject(s)
Corpus Striatum/chemistry , Dopamine/analysis , Parkinsonian Disorders/pathology , Substantia Nigra/pathology , Animals , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Immunohistochemistry , Macaca , Male , Parkinsonian Disorders/metabolism
12.
J Neuropsychiatry Clin Neurosci ; 24(1): 28-36, 2012.
Article in English | MEDLINE | ID: mdl-22450611

ABSTRACT

Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson's disease (PD) improves motor functioning but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. The authors identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood and decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN.


Subject(s)
Affect/physiology , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Subthalamic Nucleus/physiology , Aged , Female , Functional Laterality , Humans , Magnetic Resonance Imaging , Male , Mental Status Schedule , Middle Aged , Multivariate Analysis , Pain Measurement , Parkinson Disease/diagnostic imaging , Severity of Illness Index , Tomography, X-Ray Computed
13.
Mov Disord ; 26(3): 549-52, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21370264

ABSTRACT

BACKGROUND: Sequence variants in coding and noncoding regions of THAP1 have been associated with primary dystonia. METHODS: In this study, 1,446 Caucasian subjects with mainly adult-onset primary dystonia and 1,520 controls were genotyped for a variant located in the 5'-untranslated region of THAP1 (c.-237_236GA>TT). RESULTS: Minor allele frequencies were 62/2892 (2.14%) and 55/3040 (1.81%) in subjects with dystonia and controls, respectively (P=0.202). Subgroup analyses by gender and anatomical distribution also failed to attain statistical significance. In addition, there was no effect of the TT variant on expression levels of THAP1 transcript or protein. DISCUSSION: Our findings indicate that the c.-237_236GA>TT THAP1 sequence variant does not increase risk for adult-onset primary dystonia in Caucasians.


Subject(s)
Apoptosis Regulatory Proteins/genetics , DNA-Binding Proteins/genetics , Dystonic Disorders/genetics , Mutation/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Base Sequence , Child , Dystonic Disorders/etiology , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Untranslated Regions/genetics , White People/genetics , Young Adult
14.
J Med Case Rep ; 5: 599, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22208291

ABSTRACT

INTRODUCTION: Multiple system atrophy is a late, adult-onset α-synucleinopathy with no data on the effect of pregnancy on the disease course. Early stage multiple system atrophy can be difficult to distinguish from Parkinson's disease. CASE PRESENTATION: We describe the case of an Irish woman with parkinsonism starting at age 31, initially diagnosed as having dopa-responsive, idiopathic Parkinson's disease, who successfully delivered a full-term child at age 35. Her pregnancy was complicated by severe orthostatic hypotension and motor fluctuations. Two years post-partum, she underwent bilateral subthalamic nuclei deep brain stimulation for intractable motor fluctuations and disabling dyskinesia. After this treatment course she experienced deterioration of motor symptoms and death eight years after disease onset. Post-mortem neuropathological examination revealed striatonigral degeneration and α-synuclein-positive glial cytoplasmic inclusions in brain stem nuclei, basal ganglia and white matter tracts, consistent with a neuropathological diagnosis of multiple system atrophy. CONCLUSIONS: Multiple system atrophy can affect women of child-bearing age and pregnancy may be associated with marked disease progression.

15.
Brain ; 133(Pt 12): 3625-34, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20855421

ABSTRACT

The basal ganglia are thought to be important in the selection of wanted and the suppression of unwanted motor patterns according to explicit rules (i.e. response inhibition). The subthalamic nucleus has been hypothesized to play a particularly critical role in this function. Deep brain stimulation of the subthalamic nucleus in individuals with Parkinson's disease has been used to test this hypothesis, but results have been variable. Based on current knowledge of the anatomical organization of the subthalamic nucleus, we propose that the location of the contacts used in deep brain stimulation could explain variability in the effects of deep brain stimulation of the subthalamic nucleus on response inhibition tasks. We hypothesized that stimulation affecting the dorsal subthalamic nucleus (connected to the motor cortex) would be more likely to affect motor symptoms of Parkinson's disease, and stimulation affecting the ventral subthalamic nucleus (connected to higher order cortical regions) would be more likely to affect performance on a response inhibition task. We recruited 10 individuals with Parkinson's disease and bilateral deep brain stimulation of the subthalamic nucleus with one contact in the dorsal and another in the ventral subthalamic region on one side of the brain. Patients were tested with a Go-No-Go task and a motor rating scale in three conditions: stimulation off, unilateral dorsal stimulation and unilateral ventral stimulation. Both dorsal and ventral stimulation improved motor symptoms, but only ventral subthalamic stimulation affected Go-No-Go performance, decreasing hits and increasing false alarms, but not altering reaction times. These results suggest that the ventral subthalamic nucleus is involved in the balance between appropriate selection and inhibition of prepotent responses in cognitive paradigms, but that a wide area of the subthalamic nucleus region is involved in the motor symptoms of Parkinson's disease. This finding has implications for resolving inconsistencies in previous research, highlights the role of the ventral subthalamic nucleus region in response inhibition and suggests an approach for the clinical optimization of deep brain stimulation of the subthalamic nucleus for both motor and cognitive functions.


Subject(s)
Inhibition, Psychological , Subthalamic Nucleus/physiology , Aged , Behavior/physiology , Brain Mapping , Decision Making/physiology , Discrimination, Psychological , Female , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Motor Skills/physiology , Neuropsychological Tests , Parkinson Disease/pathology , Parkinson Disease/psychology , Parkinson Disease/therapy , Psychomotor Performance/physiology , Subthalamic Nucleus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...