Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
J Elast ; 145(1-2): 77-98, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35400797

ABSTRACT

Morphogenesis is regulated by genetic, biochemical, and biomechanical factors, but the feedback controlling the interactions between these factors remains poorly understood. A previous study has found that compressing the brain tube of the early chick embryo induces changes in contractility and nuclear shape in the neuroepithelial wall. Assuming this response involves mechanical feedback, we use experiments and computational modeling to investigate a hypothetical mechanism behind the observed behavior. First, we measured nuclear circularity in embryonic chick brains subjected to transverse compression. Immediately after loading, the circularity varied regionally and appeared to reflect the local state of stress in the wall. After three hours of culture with sustained compression, however, the nuclei became rounder. Exposure to a gap junction blocker inhibited this response, suggesting that it requires intercellular diffusion of a biochemical signal. We speculate that the signal regulates the contraction that occurs near the lumen, altering stress distributions and nuclear geometry throughout the wall. Simulating compression using a chemomechanical finite-element model based on this idea shows that our hypothesis is consistent with most of the experimental data. This work provides a foundation for future investigations of chemomechanical feedback in epithelia during embryonic development.

2.
Development ; 146(20)2019 10 11.
Article in English | MEDLINE | ID: mdl-31604710

ABSTRACT

During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.


Subject(s)
Brain/cytology , Morphogenesis/physiology , Animals , Brain/metabolism , Chick Embryo , Chickens , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Finite Element Analysis , Morphogenesis/genetics , Stress, Mechanical
3.
Dev Dyn ; 247(7): 914-923, 2018 07.
Article in English | MEDLINE | ID: mdl-29696727

ABSTRACT

BACKGROUND: Perturbations to embryonic hemodynamics are known to adversely affect cardiovascular development. Vitelline vein ligation (VVL) is a model of reduced placental blood flow used to induce cardiac defects in early chick embryo development. The effect of these hemodynamic interventions on maturing elastic arteries is largely unknown. We hypothesize that hemodynamic changes impact maturation of the dorsal aorta (DA). RESULTS: We examined the effects of VVL on hemodynamic properties well into the maturation process and the corresponding changes in aortic dimensions, wall composition, and gene expression. In chick embryos, we found that DA blood velocity was reduced immediately postsurgery at Hamburger-Hamilton (HH) stage 18 and later at HH36, but not in the interim. Throughout this period, DA diameter adapted to maintain a constant shear stress. At HH36, we found that VVL DAs showed a substantial decrease in elastin and a modest increase in collagen protein content. In VVL DAs, up-regulation of elastic fiber-related genes followed the down-regulation of flow-dependent genes. Together, these suggest the existence of a compensatory mechanism in response to shear-induced delays in maturation. CONCLUSIONS: The DA's response to hemodynamic perturbations invokes coupled mechanisms for shear regulation and matrix maturation, potentially impacting the course of vascular development. Developmental Dynamics 247:914-923, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Aorta/growth & development , Extracellular Matrix/metabolism , Hemodynamics , Animals , Biomechanical Phenomena , Blood Flow Velocity , Chick Embryo , Elasticity , Elastin/metabolism , Embryo, Nonmammalian , Ligation/methods , Shear Strength
4.
Proc Natl Acad Sci U S A ; 115(12): 3156-3161, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507201

ABSTRACT

During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/abnormalities , Female , Humans , Image Processing, Computer-Assisted/methods , Infant, Premature , Magnetic Resonance Imaging/methods , Male
5.
Prog Biophys Mol Biol ; 137: 25-36, 2018 09.
Article in English | MEDLINE | ID: mdl-29432780

ABSTRACT

In the vertebrate embryo, the eyes develop from optic vesicles that grow laterally outward from the brain tube and contact the overlying surface ectoderm. Within the region of contact, each optic vesicle and the surface ectoderm thicken to form placodes, which then invaginate to create the optic cup and lens pit, respectively. Eventually, the optic cup becomes the retina, while the lens pit closes to form the lens vesicle. Here, we review current hypotheses for the physical mechanisms that create these structures and present novel three-dimensional computer (finite-element) models to illustrate the plausibility and limitations of these hypotheses. Taken together, experimental and numerical results suggest that the driving forces for early eye morphogenesis are generated mainly by differential growth, actomyosin contraction, and regional apoptosis, with morphology mediated by physical constraints provided by adjacent tissues and extracellular matrix. While these studies offer new insight into the mechanics of eye development, future work is needed to better understand how these mechanisms are regulated to precisely control the shape of the eye.


Subject(s)
Eye/growth & development , Mechanical Phenomena , Animals , Biomechanical Phenomena , Eye/anatomy & histology , Humans , Lens, Crystalline/anatomy & histology , Lens, Crystalline/growth & development
6.
Phys Biol ; 15(2): 025001, 2018 02 08.
Article in English | MEDLINE | ID: mdl-28914615

ABSTRACT

During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.


Subject(s)
Apoptosis , Lens, Crystalline/embryology , Retina/embryology , Animals , Biomechanical Phenomena , Chick Embryo , Computational Biology
7.
Development ; 144(13): 2381-2391, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28526751

ABSTRACT

For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.


Subject(s)
Actomyosin/metabolism , Digestive System/embryology , Heart/embryology , Models, Biological , Organogenesis , Animals , Cell Proliferation , Chick Embryo , Computer Simulation , Finite Element Analysis
8.
J Mech Behav Biomed Mater ; 65: 383-397, 2017 01.
Article in English | MEDLINE | ID: mdl-27639481

ABSTRACT

During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late).


Subject(s)
Actins/physiology , Prosencephalon/growth & development , Animals , Cell Proliferation , Chick Embryo , Computer Simulation
10.
Biomech Model Mechanobiol ; 15(6): 1405-1421, 2016 12.
Article in English | MEDLINE | ID: mdl-26984743

ABSTRACT

In the early embryo, the eyes form initially as relatively spherical optic vesicles (OVs) that protrude from both sides of the brain tube. Each OV grows until it contacts and adheres to the overlying surface ectoderm (SE) via an extracellular matrix (ECM) that is secreted by the SE and OV. The OV and SE then thicken and bend inward (invaginate) to create the optic cup (OC) and lens vesicle, respectively. While constriction of cell apices likely plays a role in SE invagination, the mechanisms that drive OV invagination are poorly understood. Here, we used experiments and computational modeling to explore the hypothesis that the ECM locally constrains the growing OV, forcing it to invaginate. In chick embryos, we examined the need for the ECM by (1) removing SE at different developmental stages and (2) exposing the embryo to collagenase. At relatively early stages of invagination (Hamburger-Hamilton stage HH14[Formula: see text]), removing the SE caused the curvature of the OV to reverse as it 'popped out' and became convex, but the OV remained concave at later stages (HH15) and invaginated further during subsequent culture. Disrupting the ECM had a similar effect, with the OV popping out at early to mid-stages of invagination (HH14[Formula: see text] to HH14[Formula: see text]). These results suggest that the ECM is required for the early stages but not the late stages of OV invagination. Microindentation tests indicate that the matrix is considerably stiffer than the cellular OV, and a finite-element model consisting of a growing spherical OV attached to a relatively stiff layer of ECM reproduced the observed behavior, as well as measured temporal changes in OV curvature, wall thickness, and invagination depth reasonably well. Results from our study also suggest that the OV grows relatively uniformly, while the ECM is stiffer toward the center of the optic vesicle. These results are consistent with our matrix-constraint hypothesis, providing new insight into the mechanics of OC (early retina) morphogenesis.


Subject(s)
Extracellular Matrix/metabolism , Morphogenesis , Optic Disk/growth & development , Actins/metabolism , Animals , Cell Proliferation , Chick Embryo , Computer Simulation , Ectoderm/metabolism , Mice , Models, Biological , Optic Disk/anatomy & histology , Optic Disk/embryology , Staining and Labeling , Tomography, Optical Coherence
11.
J R Soc Interface ; 13(124)2016 11.
Article in English | MEDLINE | ID: mdl-28334695

ABSTRACT

During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain.


Subject(s)
Brain/embryology , Chickens , Models, Biological , Organogenesis/physiology , Animals , Chick Embryo , Vitelline Membrane/physiology
12.
Phys Biol ; 12(1): 016012, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25635663

ABSTRACT

Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep 'zipping' together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.


Subject(s)
Cytoskeleton/physiology , Heart/embryology , Myocardium/cytology , Animals , Chick Embryo
13.
Methods Mol Biol ; 1189: 3-16, 2015.
Article in English | MEDLINE | ID: mdl-25245683

ABSTRACT

Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.


Subject(s)
Embryo, Nonmammalian/physiology , Morphogenesis , Tomography, Optical Coherence/methods , Animals , Biomechanical Phenomena , Chick Embryo , Staining and Labeling , Stress, Mechanical , Tissue Culture Techniques
14.
J Biomech ; 47(16): 3837-46, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25458577

ABSTRACT

Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are sufficient to cause the global changes in OV shape observed during the earliest stages of eye development.


Subject(s)
Ectoderm/physiology , Eye/embryology , Models, Biological , Morphogenesis , Animals , Biomechanical Phenomena , Chick Embryo
15.
J R Soc Interface ; 11(100): 20140685, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25165601

ABSTRACT

When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Models, Biological
16.
Front Physiol ; 5: 297, 2014.
Article in English | MEDLINE | ID: mdl-25161623

ABSTRACT

The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

17.
Curr Opin Genet Dev ; 27: 7-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24791687

ABSTRACT

After decades focusing on the molecular and genetic aspects of organogenesis, researchers are showing renewed interest in the physical mechanisms that create organs. This review deals with the mechanical processes involved in constructing the heart and brain, concentrating primarily on cardiac looping, shaping of the primitive brain tube, and folding of the cerebral cortex. Recent studies suggest that differential growth drives large-scale shape changes in all three problems, causing the heart and brain tubes to bend and the cerebral cortex to buckle. Relatively local changes in form involve other mechanisms such as differential contraction. Understanding the mechanics of organogenesis is central to determining the link between genetics and the biophysical creation of form and structure.


Subject(s)
Brain/embryology , Heart/embryology , Organogenesis , Animals , Brain/blood supply , Coronary Vessels , Humans
18.
J Biomech Eng ; 136(8)2014 Aug.
Article in English | MEDLINE | ID: mdl-24509638

ABSTRACT

In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.


Subject(s)
Finite Element Analysis , Heart/embryology , Mechanical Phenomena , Animals , Biomechanical Phenomena , Cell Shape , Chick Embryo , Heart/anatomy & histology , Morphogenesis , Myocardium/cytology , Stress, Mechanical
19.
J Mech Behav Biomed Mater ; 28: 125-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23973771

ABSTRACT

Wounds in the embryo show a remarkable ability to heal quickly without leaving a scar. Previous studies have found that an actomyosin ring (purse string) forms around the wound perimeter and contracts to close the wound over the course of several dozens of minutes. Here, we report experiments that reveal an even faster mechanism which remarkably closes wounds by more than 50% within the first 30s. Circular and elliptical wounds (~100µm in size) were made in the blastoderm of early chick embryos and allowed to heal, with wound area and shape characterized as functions of time. The closure rate displayed a biphasic behavior, with rapid constriction lasting about a minute, followed by a period of more gradual closure to complete healing. Fluorescent staining suggests that both healing phases are driven by actomyosin contraction, with relatively rapid contraction of fibers at cell borders within a relatively thick ring of tissue (several cells wide) around the wound followed by slower contraction of a thin supracellular actomyosin ring along the margin, consistent with a purse string mechanism. Finite-element modeling showed that this idea is biophysically plausible, with relatively isotropic contraction within the thick ring giving way to tangential contraction in the thin ring. In addition, consistent with experimental results, simulated elliptical wounds heal with little change in aspect ratio, and decreased membrane tension can cause these wounds to open briefly before going on to heal. These results provide new insight into the healing mechanism in embryonic epithelia.


Subject(s)
Computer Simulation , Wound Healing , Actins/metabolism , Animals , Biomechanical Phenomena , Chick Embryo , Finite Element Analysis , Models, Biological , Myosins/metabolism , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...