Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 136(1): 58-69, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37942528

ABSTRACT

We tested the effects of cold air (0°C) exposure on endurance capacity to different levels of cold strain ranging from skin cooling to core cooling of Δ-1.0°C. Ten males completed a randomized, crossover, control study consisting of a cycling time to exhaustion (TTE) at 70% of their peak power output following: 1) 30-min of exposure to 22°C thermoneutral air (TN), 2) 30-min exposure to 0°C air leading to a cold shell (CS), 3) 0°C air exposure causing mild hypothermia of -0.5°C from baseline rectal temperature (HYPO-0.5°C), and 4) 0°C air exposure causing mild hypothermia of -1.0°C from baseline rectal temperature (HYPO-1.0°C). The latter three conditions tested TTE in 0°C air. Core temperature and seven-site mean skin temperature at the start of the TTE were: TN (37.0 ± 0.2°C, 31.2 ± 0.8°C), CS (37.1 ± 0.3°C, 25.5 ± 1.4°C), HYPO-0.5°C (36.6 ± 0.4°C, 22.3 ± 2.2°C), HYPO-1.0°C (36.4 ± 0.5°C, 21.4 ± 2.7°C). There was a significant condition effect (P ≤ 0.001) for TTE, which from TN (23.75 ± 13.75 min) to CS (16.22 ± 10.30 min, Δ-30.9 ± 21.5%, P = 0.055), HYPO-0.5°C (8.50 ± 5.23 min, Δ-61.4 ± 19.7%, P ≤ 0.001), and HYPO-1.0°C (6.50 ± 5.60 min, Δ-71.6 ± 16.4%, P ≤ 0.001). Furthermore, participants had a greater endurance capacity in CS compared with HYPO-0.5°C (P = 0.046), and HYPO-1.0°C (P = 0.007), with no differences between HYPO-0.5°C and HYPO-1.0°C (P = 1.00). Endurance capacity impairment at 70% peak power output occurs early in cold exposure with skin cooling, with significantly larger impairments with mild hypothermia up to Δ-1.0°C.NEW & NOTEWORTHY We developed a novel protocol that cooled skin temperature, or skin plus core temperature (Δ-0.5°C or Δ-1.0 °C), to determine a dose-response of cold exposure on endurance capacity at 70% peak power output. Skin cooling significantly impaired exercise tolerance time by ∼31%, whereas core cooling led to a further reduction of 30%-40% with no difference between Δ-0.5°C and Δ-1.0°C. Overall, simply cooling the skin impaired endurance capacity, but this impairment is further magnified by core cooling.


Subject(s)
Hypothermia , Humans , Male , Body Temperature/physiology , Cold Temperature , Exercise/physiology , Skin Temperature , Exercise Tolerance , Cross-Over Studies
2.
Physiol Rep ; 11(24): e15893, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38114071

ABSTRACT

This study tested the effects of skin and core cooling on cognitive function in 0°C cold air. Ten males completed a randomized, repeated measures study consisting of four environmental conditions: (i) 30 min of exposure to 22°C thermoneutral air (TN), (ii) 15 min to 0°C cold air which cooled skin temperature to ~27°C (CS), (iii) 0°C cold air exposure causing mild core cooling of ∆-0.3°C from baseline (C-0.3°C) and (iv) 0°C cold air exposure causing mild core cooling of ∆-0.8°C from baseline (C-0.8°C). Cognitive function (reaction time [ms] and errors made [#]) were tested using a simple reaction test, a two-six item working memory capacity task, and vertical flanker task to assess executive function. There were no condition effects (all p > 0.05) for number of errors made on any task. There were no significant differences in reaction time relative to TN for the vertical flanker and item working memory capacity task. However, simple reaction time was slower in C-0.3°C (297 ± 33 ms) and C-0.8°C (296 ± 41 ms) compared to CS (267 ± 26 ms) but not TN (274 ± 38). Despite small changes in simple reaction time (~30 ms), executive function and working memory was maintained in 0°C cold air with up to ∆-0.8°C reduction in core temperature.


Subject(s)
Cold Temperature , Skin Temperature , Male , Humans , Skin , Cognition , Executive Function , Body Temperature
3.
Front Psychol ; 12: 788027, 2021.
Article in English | MEDLINE | ID: mdl-35002880

ABSTRACT

Increases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear. Hyperthermia also elicits a hyperventilatory response that decreases the partial pressure of end-tidal carbon dioxide (PetCO2) and subsequently cerebral blood flow that may influence cognitive function. We studied the role of skin and core temperature along with PetCO2 on cognitive function across a range of domains. Eleven males completed a randomized, single-blinded protocol consisting of poikilocapnia (POIKI, no PetCO2 control) or isocapnia (ISO, PetCO2 maintained at baseline levels) during passive heating using a water-perfused suit (water temperature ~ 49°C) while middle cerebral artery velocity (MCAv) was measured continuously as an index of cerebral blood flow. Cognitive testing was completed at baseline, neutral core-hot skin (37.0 ± 0.2°C-37.4 ± 0.3°C), hot core-hot skin (38.6 ± 0.3°C-38.7 ± 0.2°C), and hot core-cooled skin (38.5 ± 0.3°C-34.7 ± 0.6°C). The cognitive test battery consisted of a detection task (psychomotor processing), 2-back task (working memory), set-shifting and Groton Maze Learning Task (executive function). At hot core-hot skin, poikilocapnia led to significant (both p < 0.05) decreases in PetCO2 (∆-21%) and MCAv (∆-26%) from baseline, while isocapnia clamped PetCO2 (∆ + 4% from baseline) leading to a significantly (p = 0.023) higher MCAv (∆-18% from baseline) compared to poikilocapnia. There were no significant differences in errors made on any task (all p > 0.05) irrespective of skin temperature or PetCO2 manipulation. We conclude that neither skin temperature nor PetCO2 maintenance significantly alter cognitive function during passive hyperthermia.

4.
Med Sci Sports Exerc ; 49(1): 191-199, 2017 01.
Article in English | MEDLINE | ID: mdl-27580154

ABSTRACT

PURPOSE: We tested the effectiveness of a 2-wk motivational self-talk (MST) intervention-specific to heat tolerance-on endurance capacity and cognitive function in the heat. METHODS: Eighteen trained male (n = 14) and female (n = 4) cyclists randomly received 2 wk of MST training (n = 9) or a control regimen (CON, n = 9). The experimental protocol was a PRE/POST design consisting of 30 min of cycling at 60% peak power output (PPO) in the heat (35°C, 50% relative humidity, ~3.0 m·s airflow), a 30-min rest period, followed by a time to exhaustion (TTE) test at 80% PPO, and an identical rest period. Executive function, reaction time, and working memory were tested at baseline and each rest period. Key measures included TTE, speed and accuracy on the cognitive tests, rectal temperature, HR, oxygen consumption, and RPE. RESULTS: Group (MST vs CON) × test (PRE vs POST) × time repeated-measures ANOVA revealed that MST significantly increased TTE from PRE (487 ± 173 s) to POST (679 ± 251 s, P = 0.021) concurrent with a higher terminating rectal temperature (PRE, 38.5°C ± 0.2°C; POST, 38.8°C ± 0.4°C; P = 0.023); no TTE (PRE, 531 ± 178 s; POST, 510 ± 216 s; P = 0.28) or rectal temperature (PRE, 38.4°C ± 0.3°C; POST, 38.4°C ± 0.2°C; P = 1.000) changes were found in CON. MST significantly improved both speed and accuracy for executive function from PRE/POST, with no PRE/POST differences for CON on any cognitive measure. There were no interactions (all P > 0.05) for other key measures. CONCLUSION: Motivational self-talk is effective in altering the internal psychophysiological control of exercise and plays a role in improving endurance capacity and executive function in the heat.


Subject(s)
Cognition/physiology , Hot Temperature , Motivation/physiology , Perception/physiology , Physical Endurance/physiology , Adolescent , Adult , Body Temperature/physiology , Executive Function/physiology , Female , Heart Rate/physiology , Humans , Male , Memory/physiology , Middle Aged , Oxygen Consumption/physiology , Physical Exertion , Reaction Time/physiology , Young Adult
5.
Biomed Res Int ; 2016: 8130731, 2016.
Article in English | MEDLINE | ID: mdl-27478839

ABSTRACT

Survivor of a ship ground in polar regions may have to wait more than five days before being rescued. Therefore, the purpose of this study was to explore cognitive performance during prolonged cold exposure. Core temperature (T c) and cognitive test battery (CTB) performance data were collected from eight participants during 24 hours of cold exposure (7.5°C ambient air temperature). Participants (recruited from those who have regular occupational exposure to cold) were instructed that they could freely engage in minimal exercise that was perceived to maintaining a tolerable level of thermal comfort. Despite the active engagement, test conditions were sufficient to significantly decrease T c after exposure and to eliminate the typical 0.5-1.0°C circadian rise and drop in core temperature throughout a 24 h cycle. Results showed minimal changes in CTB performance regardless of exposure time. Based on the results, it is recommended that survivors who are waiting for rescue should be encouraged to engage in mild physical activity, which could have the benefit of maintaining metabolic heat production, improve motivation, and act as a distractor from cold discomfort. This recommendation should be taken into consideration during future research and when considering guidelines for mandatory survival equipment regarding cognitive performance.


Subject(s)
Cognition , Cold Temperature , Occupational Exposure , Adult , Demography , Humans , Maze Learning , Ships , Surveys and Questionnaires , Survival Analysis , Task Performance and Analysis , Time Factors , Young Adult
6.
Aerosp Med Hum Perform ; 86(2): 82-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25946731

ABSTRACT

INTRODUCTION: Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. METHODS: After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. RESULTS: Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). DISCUSSION: The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.


Subject(s)
Breath Holding , Cold Temperature , Immersion , Military Personnel/education , Adult , Air , Aircraft , Humans , Male , Middle Aged , Military Medicine , Protective Clothing , Time Factors , Water
7.
Appl Ergon ; 42(6): 883-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21439548

ABSTRACT

Although essential in an emergency such as a helicopter ditching, mandatory survival suits worn by civilian personnel may lead to heat strain during a normal flight. To explore the possibility that wearing a helicopter transportation suit impairs emergency performance, 11 individuals completed underwater escape procedures immediately following a pre-recorded emergency announcement (randomly played between 50 and 90 min) in two ambient temperature conditions (Thermoneutral = 21 °C and Hot = 34 °C). Mean skin and rectal temperatures were recorded throughout the trials, while situation awareness and thermal sensation/comfort were recorded on completion of trials. Results indicate that although mean skin and rectal temperatures were significantly higher at the end of both trials, escape procedures were not impaired. It can therefore be concluded that although conditions inside an offshore transport helicopter are perceived as being hot and uncomfortable, no deficits in escape performance should be expected in the first 90 min of flight.


Subject(s)
Aircraft , Emergencies , Heat Stress Disorders/etiology , Protective Clothing/adverse effects , Psychomotor Performance/physiology , Adult , Awareness/physiology , Body Temperature/physiology , Female , Heart Rate/physiology , Humans , Male , Skin Temperature/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...