Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Equine Vet Sci ; 88: 102940, 2020 05.
Article in English | MEDLINE | ID: mdl-32303324

ABSTRACT

Three separate experiments were conducted to improve preservation of stallion epididymal sperm. In the first one, two different cooling extenders (Kenney and Gent) were compared. Sperm viability and motility patterns were assessed in 10 different epididymal sperm samples after 0 hours, 24 hours, 48 hours, 72 hours, and 96 hours of preservation at 4°C. No significant differences were observed in any of the evaluated parameters either between extenders or throughout the storage period. The second set of experiments was designed to determine whether supplementing thawing medium (INRA Freeze) with seminal plasma had any impact on the quality of frozen-thawed epididymal sperm. Ten epididymal frozen-thawed sperm samples coming from separate stallions were used and different functional parameters (sperm membrane integrity and lipid disorder, motility, intracellular Ca2+ levels, and intracellular concentrations of peroxides and superoxides) were evaluated after incubation with or without 50% seminal plasma. Supplementing thawing medium with seminal plasma had no impact on sperm function and survival. The third experiment was an in vivo study. Twenty-five mares were inseminated with epididymal frozen-thawed sperm and seminal plasma, and 21 were bred with epididymal frozen-thawed sperm only. Pregnancy rates obtained for mares artificially inseminated with epididymal frozen-thawed sperm and seminal plasma were significantly (P < .05) higher than those observed when seminal plasma was not infused (64% vs. 19%). Taken together, our data indicate that the quality of epididymal stallion sperm can be maintained at 4°C for up to 96 hours. In addition, not only does supplementing frozen-thawed epididymal sperm with seminal plasma have any damaging effect on their quality but it may also improve pregnancy rates after artificial insemination.


Subject(s)
Semen Preservation , Semen , Animals , Cryopreservation/veterinary , Female , Fertility , Horses , Male , Pregnancy , Semen Preservation/veterinary , Spermatozoa
2.
Zygote ; 24(5): 707-13, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26964875

ABSTRACT

The resazurin reduction test (RRT) is a useful technique to assess the metabolic rate of sperm cells. RRT depends on the ability of metabolically active cells to reduce the non-fluorescent dye resazurin to the fluorescent resorufin. The aim of this study was to develop a vital fluorometric method to evaluate metabolic activity of rabbit sperm cells. Twenty-five rabbit males were included in the study. Viability and morphology, motility and metabolic activity were evaluated using an eosin-nigrosin staining, a computer-assisted semen analysis (CASA) and the RRT, respectively. Spearman rank correlation analysis was used to determine the correlation between RRT and semen parameters. After evaluation, a concentration of 10 × 106 sperm cells/ml was selected for further experiments with RRT. No significant correlation was found between the RRT results and the motility parameters. However, after RRT a significant positive correlation between relative fluorescence units and the percentage of alive spermatozoa (r = 0.62; P = 0.001) and a negative one with the percentage of sperm cells with acrosomic abnormalities (r = -0.45; P < 0.05) were detected. The vital assessment of metabolic rate of sperm cells by RRT could provide more information about semen quality than other routine semen analysis, correlating with sperm viability and acrosome status information.


Subject(s)
Fluorometry/methods , Semen Analysis/methods , Sperm Motility , Spermatozoa/cytology , Spermatozoa/metabolism , Acrosome Reaction , Animals , Cell Survival , Male , Oxazines/metabolism , Rabbits , Sperm Count , Xanthenes/metabolism
3.
Theriogenology ; 83(2): 246-52, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25442388

ABSTRACT

Heat stress (HS) in mammals is a determining factor in the deterioration of spermatogenesis and can cause infertility. The aim of this study was to evaluate the effect of continuous summer circadian cycles on semen production, sperm cell features, fertility, prolificacy, and fecal cortisol metabolites from rabbits kept under an in vivo HS model. We split randomly 60 New Zealand White rabbits into two temperature-controlled rooms: The control group was maintained at comfort temperature (18 °C-22 °C) and an HS group, where the environmental temperature was programmed to increase from 22 °C to 31 °C and be maintained for 3 hours to this temperature at the central part of the day. Fecal cortisol metabolites were assessed to evaluate the stress conditions. Seminal parameters were analyzed. Although animals exposed to HS showed higher values of fecal cortisol metabolites (P = 0.0003), no differences were detected in fertility or prolificacy. Semen samples from HS males showed a significant decrease (P < 0.05) with respect to the controls in the percentage of viable spermatozoa (80.71% vs. 74.21%), and a significant (P ≤ 0.01) increase in the percentage of acrosomic abnormalities (22.57% vs. 36.96%) and tailless spermatozoa (7.91% vs. 12.83). Among motility parameters, no differences were found. This study describes a model of HS simulating a continuous summer daily cycle that allows periods of time to recover as it occurs under natural conditions. Although negative effects have been detected in several sperm parameters, fertility and prolificacy were not affected, suggesting a recovery of the reproductive function when normal conditions are reestablished.


Subject(s)
Circadian Rhythm/physiology , Fertility/physiology , Rabbits , Seasons , Spermatogenesis/physiology , Spermatozoa/physiology , Acrosome/ultrastructure , Animals , Cell Survival , Feces/chemistry , Hot Temperature , Hydrocortisone/analysis , Male , Models, Animal , Sperm Motility , Spermatozoa/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL