Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1181064, 2023.
Article in English | MEDLINE | ID: mdl-37929025

ABSTRACT

Aim/Introduction: The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods: Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.


Subject(s)
Liraglutide , Metabolic Syndrome , Metformin , Animals , Female , Male , Rats , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liraglutide/therapeutic use , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Metformin/therapeutic use , Rats, Sprague-Dawley , Sucrose/adverse effects , Sex Factors
2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37631030

ABSTRACT

The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT) measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again, PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallodynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or duloxetine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium and calcium channels, respectively. The dual blockade effect of the combination might explain its advantageous acute analgesic effect in the present work.

3.
Antioxidants (Basel) ; 12(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37371951

ABSTRACT

Oxidative stress and sterile inflammation play roles in the induction and maintenance of metabolic syndrome (MetS). This study cohort included 170 females aged 40 to 45 years who were categorized according to the presentation of MetS components (e.g., central obesity, insulin resistance, atherogenic dyslipidemia, and elevated systolic blood pressure) as controls not presenting a single component (n = 43), those with pre-MetS displaying one to two components (n = 70), and females manifesting MetS, e.g., ≥3 components (n = 53). We analyzed the trends of seventeen oxidative and nine inflammatory status markers across three clinical categories. A multivariate regression of selected oxidative status and inflammatory markers on the components of MetS was performed. Markers of oxidative damage (malondialdehyde and advanced-glycation-end-products-associated fluorescence of plasma) were similar across the groups. Healthy controls displayed lower uricemia and higher bilirubinemia than females with MetS; and lower leukocyte counts, concentrations of C-reactive protein, interleukine-6, and higher levels of carotenoids/lipids and soluble receptors for advanced glycation end-products than those with pre-MetS and MetS. In multivariate regression models, levels of C-reactive protein, uric acid, and interleukine-6 were consistently associated with MetS components, although the impacts of single markers differed. Our data suggest that a proinflammatory imbalance precedes the manifestation of MetS, while an imbalance of oxidative status accompanies overt MetS. Further studies are needed to elucidate whether determining markers beyond traditional ones could help improve the prognosis of subjects at an early stage of MetS.

4.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175678

ABSTRACT

Despite the large arsenal of analgesic medications, neuropathic pain (NP) management is not solved yet. Angiotensin II receptor type 1 (AT1) has been identified as a potential target in NP therapy. Here, we investigate the antiallodynic effect of AT1 blockers telmisartan and losartan, and particularly their combination with morphine on rat mononeuropathic pain following acute or chronic oral administration. The impact of telmisartan on morphine analgesic tolerance was also assessed using the rat tail-flick assay. Morphine potency and efficacy in spinal cord samples of treated neuropathic animals were assessed by [35S]GTPγS-binding assay. Finally, the glutamate content of the cerebrospinal fluid (CSF) was measured by capillary electrophoresis. Oral telmisartan or losartan in higher doses showed an acute antiallodynic effect. In the chronic treatment study, the combination of subanalgesic doses of telmisartan and morphine ameliorated allodynia and resulted in a leftward shift in the dose-response curve of morphine in the [35S]GTPγS binding assay and increased CSF glutamate content. Telmisartan delayed morphine analgesic-tolerance development. Our study has identified a promising combination therapy composed of telmisartan and morphine for NP and opioid tolerance. Since telmisartan is an inhibitor of AT1 and activator of PPAR-γ, future studies are needed to analyze the effect of each component.


Subject(s)
Analgesics, Opioid , Neuralgia , Rats , Animals , Analgesics, Opioid/therapeutic use , Telmisartan/pharmacology , Telmisartan/therapeutic use , Losartan/therapeutic use , Guanosine 5'-O-(3-Thiotriphosphate) , Drug Tolerance , Analgesics/pharmacology , Analgesics/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Neuralgia/drug therapy , Glutamates/therapeutic use
5.
Nutrients ; 14(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432614

ABSTRACT

α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years. The between-group comparison was performed using the two-factor (sex, presence/absence of insulin resistance) analysis of variance; multiple regression via the orthogonal projection to latent structures model. In comparison with their insulin-sensitive peers, young healthy insulin-resistant individuals without diabetes manifest alterations throughout the α-dicarbonyls-AGEs-sRAGE axis, dominated by higher 3-deoxyglucosone levels. Variables of α-dicarbonyls-AGEs-sRAGE axis were associated with insulin sensitivity independently from cardiometabolic risk markers, and sex-specifically. Cleaved RAGE associates with QUICKI only in males; while multiple α-dicarbonyls and AGEs independently associate with QUICKI particularly in females, who displayed a more advantageous cardiometabolic profile compared with males. Further studies are needed to elucidate whether interventions alleviating dicarbonyl stress ameliorate insulin resistance.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Male , Female , Humans , Glycation End Products, Advanced , Case-Control Studies , Insulin
6.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076962

ABSTRACT

Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.


Subject(s)
Neuralgia , Tolperisone , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Disease Models, Animal , Glutamic Acid , Neuralgia/drug therapy , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats , Tolperisone/pharmacology , Tolperisone/therapeutic use
7.
Int J Mol Sci ; 23(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36012724

ABSTRACT

Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.


Subject(s)
Cyclodextrins , Lipid Metabolism Disorders , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Animals , Cholesterol/metabolism , Cyclodextrins/metabolism , Cyclodextrins/pharmacology , Gangliosides/metabolism , Glutamic Acid/metabolism , Lipid Metabolism Disorders/metabolism , Membrane Microdomains/metabolism , Rats , Synaptosomes/metabolism
8.
Life (Basel) ; 12(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35743826

ABSTRACT

BACKGROUND: In obesity, the adipose tissue becomes a very significant endocrine organ producing different factors called adipokines, such as leptin, adiponectin and kisspeptin; however, no data are available about their actions on uterine contraction in obese pregnant rats. Our aim was to study the impact of obesity on pregnant uterine contraction in a rat model. METHODS: Obesity was induced by the consumption of a high fat high sucrose diet (HFHSD) for 9 weeks, including pregnancy. Glucose tolerance, sex hormone, cytokine and adipokine levels were measured. Uterine contractions and cervical resistance, as well as their responses to adipokines, were tested along with the expressions of their uterine receptors. RESULTS: HFHSD increased body weight, and altered glucose tolerance and fat composition. The uterine leptin and kisspeptin pathway affect increased. The levels of proinflammatory cytokines were reduced, while the plasma level of progesterone was increased, resulting in weaker uterine contractions, and improving the uterine relaxing effects of adipokines. HFHSD reduced cervical resistance, but the core effect of adipokines is difficult to determine. CONCLUSIONS: Obesity in pregnant rats reduces uterine contractility and cytokine-induced inflammatory processes, and therefore obese pregnant rat methods are partially applicable for modelling human processes.

9.
Cell Physiol Biochem ; 55(S4): 96-112, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34936286

ABSTRACT

BACKGROUND/AIMS: The number of patients of older age with metabolic syndrome, obesity, and associated kidney disease, which is characterized by podocyte damage, glomerular hypertrophy, and focal segmental glomerulosclerosis (FSGS), is increasing worldwide. Animal models that would reflect the development of such kidney diseases could facilitate the testing of drugs. We investigated the renal effects of a long-term high caloric diet in aged rats and the potential effects of drugs used to treat metabolic syndrome. METHODS: We analyzed nine-month-old male and female Sprague Dawley rats fed five months with a normal diet (control group) or high-fat-high-carbohydrate diet (HFHCD group). Two additional groups were fed with HFHCD and treated with drugs used in patients with metabolic syndrome, i.e., the glucagon-like peptide receptor 1 agonist liraglutide (HFHCD+liraglutide group) or metformin (HFHCD+metformin group). RESULTS: Except an increase of waist circumference as a sign of visceral obesity, the HFHCD diet did not induce metabolic syndrome or obesity. There were no significant changes in kidney function and all groups showed similar indices of glomerular injury, i.e., no differences in glomerular size or the number of glomeruli with FSGS or with FSGS-precursor lesions quantified by CD44 expression as a marker of parietal epithelial cell (PEC) activation. Analysis of ultrastructural morphology revealed mild podocyte stress and a decrease of glomerular nestin expression in the HFHCD group, whereas podocin and desmin were not altered. HFHCD did not promote fibrogenesis, however, treatment with liraglutide led to a slightly increased tubulointerstitial damage, immune cell infiltration, and collagen IV expression compared to the control and HFHCD groups. CONCLUSION: A five-month feeding with HFHCD in aged rats induced mild podocyte injury and microinflammation, which was not alleviated by liraglutide or metformin.


Subject(s)
Diet, High-Fat/adverse effects , Kidney Diseases/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Podocytes/metabolism , Animals , Female , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Liraglutide/pharmacology , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/drug therapy , Metabolic Syndrome/pathology , Metformin/pharmacology , Obesity/chemically induced , Obesity/drug therapy , Obesity/pathology , Podocytes/pathology , Rats , Rats, Sprague-Dawley
10.
Acta Histochem ; 123(8): 151817, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34808525

ABSTRACT

The comparative effects of the two commonly used antidiabetic drugs metformin and liraglutide on renal pathology and expression of connexin 45 (Cx45) and pannexin 1 (Panx1) in adult obese rats fed high-fat high-sugar diet (HFHSD) were studied. Considering recent data on the profound influence of sex on metformin and liraglutide effects, we compared the effects of both drugs between male and female animals. 44-week-old Sprague-Dawley rats were separated into 4 groups that were fed: standard diet, HFHSD, HFHSD treated with metformin (s.c., 50 mg/kg/day) and HFHSD treated with liraglutide (s.c., 0.3 mg/kg/day). Treatment with metformin or liraglutide lasted for 14 weeks. Histology and immunohistochemistry were performed to quantify renal pathological changes and Cx45 and Panx1 expression. HFHSD caused thickening of the Bowman's capsule (BC). Both metformin and liraglutide failed to ameliorate the BC thickening; metformin even worsened it. Effects on the tubulointerstitial fibrosis score, BC thickness and Cx45 and Panx1 expression were sex-dependent. We found a 50% increase in mitochondria in proximal tubules of metformin- and liraglutide-treated HFHSD-fed rats, but these effects were not dependent on the sex. This is a first study showing that the effects of metformin and liraglutide on kidney pathology in rats fed HFHSD are mostly sex-dependent and that these effects are not necessarily beneficial. Both drugs changed the Cx45 and Panx 1 expression; hence their effects could be related to amelioration of disruptions in intercellular communication.


Subject(s)
Connexins/biosynthesis , Diet, High-Fat/adverse effects , Dietary Carbohydrates/adverse effects , Gene Expression Regulation/drug effects , Kidney/metabolism , Liraglutide/pharmacology , Metformin/pharmacology , Nerve Tissue Proteins/biosynthesis , Sex Characteristics , Animals , Dietary Carbohydrates/pharmacology , Female , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley , Time Factors
11.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34684749

ABSTRACT

The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.


Subject(s)
Chronic Pain/drug therapy , Receptors, Angiotensin/drug effects , Receptors, Opioid, mu/drug effects , Analgesics/pharmacology , Analgesics, Opioid/pharmacology , Animals , Humans , Neuralgia/drug therapy , Nociception/drug effects , Pain Management/methods , Proto-Oncogene Mas , Receptors, Angiotensin/metabolism , Receptors, Opioid/agonists , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism
12.
J Pharm Biomed Anal ; 205: 114329, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34418676

ABSTRACT

Gangliosides are sialic acid containing glycosphingolipids of the plasma membrane with diverse biological functions. They are most abundant in neural tissues where their dysregulation has been suggested to be involved in various pathological conditions. Due to their importance, efficient analytical methods are needed to determine individual gangliosides in biological samples. Here we report a capillary electrophoresis method, optimized and validated for the simultaneous quantification of major neural gangliosides GM1, GD1a, GD1b, GT1b and GQ1b in their underivatized form. The most abundant extraneural monosialogangloside, GM3 can also be separated by this method. Micelles of the highly amphiphilic gangliosides were disrupted with cyclodextrins (CyDs) in the aqueous separation buffer. Among the tested CyDs, the best resolution was observed using 20 mM randomly methylated alpha-CyD in alkaline sodium borate buffer enabling the separation of all studied gangliosides. The method was applied for the quantification of gangliosides in rat cerebral and cerebellar synaptosomes.


Subject(s)
Gangliosides , Synaptosomes , Animals , Brain , Cell Membrane , Electrophoresis, Capillary , Rats
13.
Int J Mol Sci ; 22(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804568

ABSTRACT

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Subject(s)
Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine/cerebrospinal fluid , Hyperalgesia/prevention & control , Neuralgia/drug therapy , Sarcosine/analogs & derivatives , Animals , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Motor Activity , Neuralgia/metabolism , Neuralgia/pathology , Rats , Rats, Wistar , Sarcosine/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799684

ABSTRACT

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


Subject(s)
Aging/physiology , Disease Models, Animal , Hearing Loss, Sensorineural/drug therapy , Selegiline/pharmacology , Administration, Oral , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Auditory Threshold/drug effects , Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/drug effects , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Sensorineural/physiopathology , Humans , Male , Mice, Inbred BALB C , Mice, Inbred DBA , Protective Agents/administration & dosage , Protective Agents/pharmacology , Selegiline/administration & dosage , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
15.
Neurochem Res ; 46(6): 1350-1358, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33616807

ABSTRACT

Recently neuronal insulin resistance was suggested playing a role in Alzheimer's disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration-response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.


Subject(s)
Cell Differentiation/physiology , Insulin Resistance/physiology , Insulin/pharmacology , Streptozocin/toxicity , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Exenatide/pharmacology , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/drug effects , Tretinoin/pharmacology
16.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140473, 2020 10.
Article in English | MEDLINE | ID: mdl-32574765

ABSTRACT

Decreased extracellular level of d-Serine (D-Ser), a co-agonist of the N-methyl-d-aspartate (NMDA) receptors was connected to receptor hypofunction in the brain and the related deficit of cognitive functions. Extracellular D-Ser concentration is modulated by ASCT neutral amino acid transporters. L-Theanine (L-Tea), a neutral amino acid component of green tea was reported to improve cognitive functions. We thus intended to investigate the possible inhibitory effect of L-Tea on the D-Ser uptake of SH-SY5Y neuroblastoma cells, which was previously found as a good model of D-Ser transport into astrocytes. Cells were incubated with D-Ser and various concentrations of L-Tea or the reference compound S-ketamine (S-Ket). The effect on the uptake was assessed by measuring the intracellular D-Ser concentration using a capillary electrophoresis - laser induced fluorescence detection method. L-Tea competitively inhibited D-Ser uptake into SH-SY5Y cells with an IC50 value of 9.68 mM. Having previously described as an inhibitor of ASCT-2 transporter, S-Ket was intended to be used as a positive control. However, no acute inhibition of D-Ser transport by S-Ket was observed. Its long-term effect on the transport was also examined. No significant difference in D-Ser uptake in control and S-Ket-treated cells was found after 72 h treatment, although the intracellular D-Ser content of the 50 µM S-Ket pre-treated cells was significantly higher. L-Tea was found to be a weak competitive inhibitor of the ASCT transporters, while S-Ket did not directly affect D-Ser uptake or modify the uptake kinetics after a long-term incubation period.


Subject(s)
Glutamates/pharmacology , Ketamine/pharmacology , Serine/metabolism , Biological Transport/drug effects , Cell Line, Tumor , Humans
17.
J Pharm Biomed Anal ; 187: 113360, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32447235

ABSTRACT

d-Serine is an important co-agonist of the N-methyl-d-aspartate (NMDA) receptors in the brain and its altered activity was identified in various pathological conditions. Modification of the extracellular d-serine level is suggested to be able to modulate the receptor function. Its transporters may thus serve as potential drug targets. The aim of this work was to find an easily available human cell line model appropriate for screening molecules affecting d-serine transporters. Characteristics of d-serine transport into SH-SY5Y human neuroblastoma cell line were studied and compared to those in cultured primary astrocytes. Uptake was followed by measuring intracellular d-serine concentration by capillary electrophoresis with laser induced fluorescence detection method. We found that SH-SY5Y cells express functional ASCT-1 and ASCT-2 neutral amino acid transporters and show similar d-serine uptake kinetics to cultured astrocytes. Neutral amino acids inhibited d-serine uptake similarly in both cell types. Complete inhibition was achieved by l-alanine and l-threonine alike, while the two-step inhibition curve of trans-hydroxy-l-proline, a selective inhibitor of ASCT-1 supported the presence of functioning ASCT-1 and ASCT-2 transporters. Its higher affinity step corresponding to inhibition of ASCT-1 was responsible for about 30% of the total d-serine uptake. Based on our results human SH-SY5Y cell line shows similar uptake characteristics to primary astrocytes and thus can serve as a suitable model system for testing of compounds for influencing d-serine uptake into astrocytes.


Subject(s)
Astrocytes/metabolism , Neuroblastoma/metabolism , Serine/metabolism , Amino Acid Transport System ASC/metabolism , Animals , Biological Transport/physiology , Cell Line , Cell Line, Tumor , Cells, Cultured , Electrophoresis, Capillary , Humans , Minor Histocompatibility Antigens/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists
18.
J Neural Transm (Vienna) ; 127(5): 831-842, 2020 05.
Article in English | MEDLINE | ID: mdl-31562557

ABSTRACT

Monoamine oxidase B (MAO-B) inhibitors have an established role in the treatment of Parkinson's disease as monotherapy or adjuvant to levodopa. Two major recognitions were required for their introduction into this therapeutic field. The first was the elucidation of the novel pharmacological properties of selegiline as a selective MAO-B inhibitor by Knoll and Magyar and the original idea of Riederer and Youdim, supported by Birkmayer, to explore its effect in parkinsonian patients with on-off phases. In the 1960s, MAO inhibitors were mainly studied as potential antidepressants, but Birkmayer found that combined use of levodopa and various MAO inhibitors improved akinesia in Parkinson's disease. However, the serious side effects of the first non-selective MAO inhibitors prevented their further use. Later studies demonstrated that MAO-B, mainly located in glial cells, is important for dopamine metabolism in the brain. Recently, cell and molecular studies revealed interesting properties of selegiline opening new possibilities for neuroprotective mechanisms and a disease-modifying effect of MAO-B inhibitors.


Subject(s)
Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Selegiline/pharmacology , Animals , Humans
19.
J Neural Transm (Vienna) ; 127(1): 71-80, 2020 01.
Article in English | MEDLINE | ID: mdl-31858268

ABSTRACT

Recently, it is suggested that brain insulin resistance may contribute to the development of Alzheimer's disease; therefore, there is a high interest in its investigation. Streptozotocin (STZ) is often used to induce dysregulation of glucose and insulin metabolism in animal and cell culture models. Alteration in insulin sensitivity however, has not yet been assessed in neuronal cells after STZ treatment. We aimed at studying the concentration dependence of the protective effect of insulin on STZ-induced damage using SH-SY5Y cell line. Cells were treated with STZ and cell viability was assessed by resazurin reduction and lactate dehydrogenase release assays. Low serum (LS) medium was used as control damage. The effect of various concentrations (30, 100, 300, 1000 nM) of insulin was studied on cell viability and glycogen synthase kinase-3 (GSK-3) phosphorylation, an indicator of insulin signaling. STZ induced dose- and time-dependent cytotoxicity, its 1 mM concentration exerted a low, gradually developing damage. The cytoprotective effect of insulin was demonstrated in both STZ and LS groups. Its maximal effect was lower in the STZ-treated cells; however, its effective concentration remained largely unaltered. Insulin-induced GSK-3 phosphorylation was similar in the STZ- and LS-treated cells suggesting unchanged insulin signaling. Our present results indicate that STZ does not induce significant impairment in insulin sensitivity in SH-SY5Y cells, thus in this cell line it is not a good tool for studying the role of insulin resistance in neurodegeneration and to examine protective agents acting by improving insulin signaling.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Insulin Resistance , Insulin/pharmacology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Streptozocin/pharmacology , Cell Line, Tumor , Humans
20.
Respir Res ; 20(1): 156, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311549

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is related to endothelial dysfunction and the impaired generation of nitric oxide (NO) from L-arginine by the endothelial NO synthase (eNOS). The relationship between eNOS dysfunctionality and airway inflammation is unknown. We assessed serum asymmetric and symmetric dimethylarginine (ADMA and SDMA) and nitrite/nitrate concentrations, indicators of eNOS function, in patients with COPD and correlated them with markers of inflammation. METHODS: We recruited 15 control smokers, 29 patients with stable and 32 patients with exacerbated COPD requiring hospitalization (20 of them were measured both at admission and discharge). Serum L-arginine, ADMA, SDMA, nitrite and nitrate were measured and correlated with airway inflammatory markers (fractional exhaled nitric oxide concentration - FENO, sputum nitrite and nitrate, sputum cellularity), serum C-reactive protein - CRP, white blood cell count, lung function and blood gases. ANOVA, t-tests and Pearson correlation were used (mean ± SD or geometric mean ± geometric SD for nitrite/nitrate). RESULTS: Serum L-arginine/ADMA, a marker of substrate availability for eNOS, was lower in stable (214 ± 58, p < 0.01) and exacerbated COPD (231 ± 68, p < 0.05) than in controls (287 ± 64). The serum concentration of SDMA, a competitor of L-arginine transport, was elevated during an exacerbation (0.78 ± 0.39 µM) compared to stable patients (0.53 ± 0.14 µM, p < 0.01) and controls (0.45 ± 0.14 µM, p < 0.001). ADMA correlated with blood neutrophil percentage (r = 0.36, p < 0.01), FENO (r = 0.42, p < 0.01) and a tendency for positive association was observed to sputum neutrophil count (r = 0.33, p = 0.07). SDMA correlated with total sputum inflammatory cell count (r = 0.61, p < 0.01) and sputum neutrophil count (r = 0.62, p < 0.01). Markers were not related to lung function, blood gases or CRP. L-arginine/ADMA was unchanged, but serum SDMA level decreased (0.57 ± 0.42 µM, p < 0.05) after systemic steroid treatment of the exacerbation. Serum nitrite level increased in stable and exacerbated disease (4.11 ± 2.12 and 4.03 ± 1.77 vs. control: 1.61 ± 1.84 µM, both p < 0.001). CONCLUSIONS: Our data suggest impaired eNOS function in stable COPD, which is transiently aggravated during an exacerbation and partly reversed by systemic steroid treatment. Serum ADMA and SDMA correlate with airway inflammatory markers implying a possible effect of anti-inflammatory therapy on endothelial dysfunction. Serum nitrite can serve as a compensatory pool for impaired endothelial NO generation.


Subject(s)
Inflammation Mediators/blood , Nitric Oxide Synthase Type III/blood , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Signal Transduction/physiology , Aged , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Sputum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...