Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 15(1): 42, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193227

ABSTRACT

BACKGROUND: Silver orthophosphate (Ag3PO4) has received enormous attention over the past few years for its higher visible light photocatalytic performance as well as for various organic pollutants degradation in aqueous media. Therefore, considerable efforts have been made to the synthesis of Ag3PO4 with high catalytic efficiency, long lifetime, and using low-cost inorganic precursors. RESULTS: This article describes our efforts to develop a novel approach to synthesize of nanostructured silver phosphate (Ag3PO4) using phosphate rock as alternative and natural source of PO43- precursor ions. The catalytic experimental studies showed that the nanostructured Ag3PO4 exhibited excellent catalytic activity for reduction of p-nitrophenol in the presence of NaBH4 at room temperature. Furthermore, the antibacterial studies revealed that the obtained Ag3PO4 possess significant effect against E. Coli and S. Aureus bacteria. CONCLUSION: The obtained results make the nanostructured Ag3PO4 prepared from natural phosphate as a highly promising candidate to be used as efficient catalyst and antibacterial agent.

2.
RSC Adv ; 8(3): 1351-1360, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35540914

ABSTRACT

Herein, we report the preparation of magnetic CoFe2O4 nanoparticles and CoFe2O4/graphene oxide (GO) hybrids and evaluate their catalytic activity as heterogeneous peroxymonosulfate (PMS) activators for the decomposition of rhodamine B. The surface morphologies and structures of both CoFe2O4 nanoparticles and CoFe2O4/GO hybrids were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption isotherms. The magnetic properties of the samples were assessed using a SQUID magnetometer at 298 K. Catalytic oxidation experiments demonstrated that CoFe2O4/GO hybrids exhibited much better catalytic activity than CoFe2O4 nanoparticles or CoFe2O4/reduced graphene oxide (rGO) hybrids, suggesting that GO plays an important role in CoFe2O4/GO hybrids in the decomposition of rhodamine B. The influence of various reaction conditions such as temperature, concentration of PMS, pH and decomposition time of rhodamine B over the CoFe2O4/GO catalyst were investigated and optimized. The rhodamine B degradation process was found to fit a pseudo-first order kinetics model. The catalyst could be easily separated from the reaction mixture by applying an external magnet. In particular, the as-prepared CoFe2O4/GO hybrid exhibited good reusability and stability in successive degradation experiments in PMS solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...