Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 2276, 2013.
Article in English | MEDLINE | ID: mdl-23880632

ABSTRACT

The fabrication of advanced devices increasingly requires materials with different properties to be combined in the form of monolithic heterostructures. In practice this means growing epitaxial semiconductor layers on substrates often greatly differing in lattice parameters and thermal expansion coefficients. With increasing layer thickness the relaxation of misfit and thermal strains may cause dislocations, substrate bowing and even layer cracking. Minimizing these drawbacks is therefore essential for heterostructures based on thick layers to be of any use for device fabrication. Here we prove by scanning X-ray nanodiffraction that mismatched Ge crystals epitaxially grown on deeply patterned Si substrates evolve into perfect structures away from the heavily dislocated interface. We show that relaxing thermal and misfit strains result just in lattice bending and tiny crystal tilts. We may thus expect a new concept in which continuous layers are replaced by quasi-continuous crystal arrays to lead to dramatically improved physical properties.

2.
Adv Mater ; 25(32): 4408-12, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23788016

ABSTRACT

An innovative strategy in dislocation analysis, based on comparison between continuous and tessellated film, demonstrates that vertical dislocations, extending straight up to the surface, easily dominate in thick Ge layers on Si(001) substrates. The complete elimination of dislocations is achieved by growing self-aligned and self-limited Ge microcrystals with fully faceted growth fronts, as demonstrated by AFM extensive etch-pit counts.

SELECTION OF CITATIONS
SEARCH DETAIL
...