Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765563

ABSTRACT

In this paper, we present an alternative technique for the removal of Brilliant Green dye (BG) in aqueous solutions based on the application of molecularly imprinted polymer (MIP) as a selective adsorbent for BG. The MIP was prepared by bulk radical polymerization using BG as the template; methacrylic acid (MAA) as the functional monomer, selected via computer simulations; ethylene glycol dimethacrylate (EGDMA) as cross-linker; and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the radical initiator. Scanning electron microscopy (SEM) analyses of the MIP and non-molecularly imprinted polymer (NIP)-used as the control material-showed that the two polymers exhibited similar morphology in terms of shape and size; however, N2 sorption studies showed that the MIP displayed a much higher BET surface (three times bigger) compared to the NIP, which is clearly indicative of the adequate formation of porosity in the former. The data obtained from FTIR analysis indicated the successful formation of imprinted polymer based on the experimental procedure applied. Kinetic adsorption studies revealed that the data fitted quite well with a pseudo-second order kinetic model. The BG adsorption isotherm was effectively described by the Langmuir isotherm model. The proposed MIP exhibited high selectivity toward BG in the presence of other interfering dyes due to the presence of specific recognition sites (IF = 2.53) on its high specific surface area (112 m2/g). The imprinted polymer also displayed a great potential when applied for the selective removal of BG in real river water samples, with recovery ranging from 99 to 101%.

2.
J Hazard Mater ; 384: 121374, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31672437

ABSTRACT

A molecularly imprinted polymer (MIP) was developed for the determination of acid violet 19 (AV19) dye. The MIP was synthesized by polymerization using 1-vinyl imidazole (functional monomer) and 2,2'-azobis(2-methylpropionitrile) as the radical initiator. The functional monomer was previously selected by computational simulations. The MIP adsorption data could be fitted using the Langmuir model obtained a Qm value of 6.93 mg g-1 and 2.84 mg g-1 for the corresponding non-imprinted polymer (NIP) and the process followed pseudo-second-order kinetics (k2 0.2416 mg g-1 min-1 MIP). The BET specific surface areas were 229.6 m2 g-1 and 28.6 m² g-1, to MIP and NIP, respectively. Analyses showed that the material provided excellent selectivity towards acid violet 19 (AV19) when compared to other analytes including Acid Violet 17 (AV17), Tartrazine (TZ), Acid Red 14 (AR14), Patent blue-VF (PBV), Sunset yellow FCF (SY) and Acid Red 1 (AR1). The calculated Kd value for the MIP was 0.116 L g-1 and the imprinting factor was 2.89. This alternative and effective material for the enrichment, extraction, and determination of acid violet 19 presents in complex real samples was applied using two different rivers water and industrial effluent, with excellent recoveries values ranging between 85% up to 99%.

3.
Biosens Bioelectron ; 118: 181-187, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30077132

ABSTRACT

The electrochemical detection of methyl parathion in fish was performed by preconcentrating the pesticide on magnetic molecularly imprinted polymer and further readout on magneto-actuated electrode by square wave voltammetry. The magnetic molecularly imprinted polymer was synthesized by a magnetic core-shell strategy, using methacrylic acid as a functional monomer, and selected by theoretical calculation using the density functional theory (DFT). The characterization of this material was performed by SEM, TEM and XRD. Moreover, the binding capacity and selectivity towards methyl parathion was studied and compared with the corresponding magnetic non-imprinted polymer. The magneto-actuated electrochemical sensor showed outstanding analytical performance for the detection of methyl parathion in fish, with a limit of detection of as low as 1.22 × 10-6 mg L-1 and recovery values ranging from 89.4% to 94.7%. The magnetic molecularly imprinted polymer successfully preconcentrated the analyte from the complex samples and paves the way to incorporate this material in other platforms for the detection of this pesticide in the field of environmental control and food safety.


Subject(s)
Electrochemical Techniques , Environmental Monitoring/methods , Food Analysis/methods , Methyl Parathion/analysis , Animals , Electrodes , Fishes , Molecular Imprinting , Polymers
4.
Biosens Bioelectron ; 89(Pt 1): 224-233, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27005454

ABSTRACT

Advances in analysis are required for rapid and reliable clinical diagnosis. Graphene is a 2D material that has been extensively used in the development of devices for the medical proposes due to properties such as an elevated surface area and excellent electrical conductivity. On the other hand, architectures have been designed with the incorporation of different biological recognition elements such as antibodies/antigens and DNA probes for the proposition of immunosensors and genosensors. This field presents a great progress in the last few years, which have opened up a wide range of applications. Here, we highlight a rather comprehensive overview of the interesting properties of graphene for in vitro, in vivo, and point-of-care electrochemical biosensing. In the course of the paper, we first introduce graphene, electroanalytical methods (potentiometry, voltammetry, amperometry and electrochemical impedance spectroscopy) followed by an overview of the prospects and possible applications of this material in electrochemical biosensors. In this context, we discuss some relevant trends including the monitoring of multiple biomarkers for cancer diagnostic, implantable devices for in vivo sensing and, development of point-of-care devices to real-time diagnostics.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Graphite/chemistry , Nanostructures/chemistry , Point-of-Care Systems , Animals , Biomarkers/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Models, Molecular , Nanostructures/ultrastructure , Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...