Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Vet Immunol Immunopathol ; 273: 110788, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38838485

ABSTRACT

Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.

3.
Arch Virol ; 169(5): 108, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658418

ABSTRACT

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.


Subject(s)
Biotechnology , Nucleopolyhedroviruses , Spodoptera , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Animals , Sf9 Cells , Biotechnology/methods , Spodoptera/virology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Occlusion Body Matrix Proteins , Occlusion Bodies, Viral/metabolism , Occlusion Bodies, Viral/genetics , Cell Line , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Article in English | MEDLINE | ID: mdl-38481660

ABSTRACT

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Subject(s)
Chagas Disease , Parasites , Protozoan Vaccines , Trypanosoma cruzi , Vaccines , Humans , Animals , Mice , Baculoviridae/genetics , Antigens, Protozoan/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/genetics , Vaccination , Protozoan Vaccines/genetics
5.
Gene Ther ; 31(3-4): 187-194, 2024 03.
Article in English | MEDLINE | ID: mdl-38278988

ABSTRACT

Baculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses. It was obtained by inserting the VSV-G gene under the control of the very strong and infection-inducible pXXL promoter and was subsequently diluted to establish oligoclonal lines, which were selected by the fusogenic properties of VSV-G and its expression levels in infected cells and purified budded virions. Next, to enhance the performance of the cell line, the infection conditions under which functional pseudotyped baculoviruses are obtained were optimized. Finally, different baculoviruses were pseudotyped and the expression of the transgene was quantified in mammalian cells of diverse origins using flow cytometry. The transduction efficiency of pseudotyped baculovirus consistently increased across all tested mammalian cell lines compared with control viruses. These findings demonstrate the feasibility and advantages of improving gene delivery performance without the need to insert the pseudotyping gene into the baculoviral genomes.


Subject(s)
Baculoviridae , Gene Transfer Techniques , Animals , Baculoviridae/genetics , Cell Line , Genetic Therapy , Promoter Regions, Genetic , Genetic Vectors/genetics , Transduction, Genetic , Viral Envelope Proteins/genetics , Mammals/genetics , Mammals/metabolism
6.
Appl Microbiol Biotechnol ; 107(20): 6277-6286, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37578557

ABSTRACT

Poxins are poxviral proteins that act by degrading 2´3´-cGAMP, a key molecule of cGAS-STING axis that drives and amplifies the antiviral response. Previous works have described some poxin homologous among lepidopteran and baculoviral genes. In particular, P26, a poxin homologous from AcMNPV retains the 2´3´-cGAMP degradation activity in vitro. In this work, we demonstrated that the antiviral activity triggered by baculovirus was disrupted by the transient expression of P26 in murine and human cell lines, and the effect of this action is not only on IFN-ß production but also on the induction of IFN-λ. Besides, we proved P26 functionality in a stable-transformed cell line where the protein was constitutively expressed, preventing the production of IFN-ß induced by baculovirus and resulting in an improvement in the transduction efficiency by the attenuation of the antiviral activity. Finally, we incorporated P26 into budded virions by capsid display or passive incorporation, and the results showed that both strategies resulted in an improvement of 3-17 times in the efficiency of transgene expression in murine fibroblasts. Our results suggest that the incorporation of P26 to budded baculoviral vectors is a very promising tool to modulate negatively the innate antiviral cellular response and to improve the efficiency of gene delivery in mammalian cells. KEY POINTS: • P26 affects baculovirus-induced IFN-ß and IFN-λ production in mammalian cells. • Murine fibroblasts expressing P26 are more susceptible to transduction by baculovirus. • Incorporation of P26 into the virion improves gene delivery efficiency of baculovirus.

7.
Int J Pharm ; 630: 122435, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36442723

ABSTRACT

"Smart" nanogels are an attractive tool for the development of new strategies of immunization in veterinary medicine. Here, we reported the synthesis and physicochemical characterization of thermoresponsive nanogels based on poly(N-isopropylacrylamide) (pNIPAM) and theirin vitro, ex vivoand in vivo (mice model) performance. Smart nanogels of ca. 250 nm, with a transition temperature of 32 °C were obtained by precipitation polymerization. Assays to evaluatepNIPAM nanogels cytotoxicity were performed in different cell lines showing high biocompatibility (>70 %). The efficient internalization of the system was studied by confocal microscopy as well as flow cytometry. The ability to protect and deliver antigens was analyzed using the outer membrane lipoprotein A (OmlA), an important virulence factor ofActinobacillus pleuropneumoniae(App)cause of porcine pleuropneumonia. This lipoprotein was synthesized by recombinant technology and its technique was also described. The biodistribution ofpNIPAM nanogels administered intranasally was performedinvivo and ex vivo through Pearl Imaging System, which showed that nanogels were kept mostly in the lungs during the evaluated time. Besides, the efficacy of the proposal nanogel-based vaccine was studiedin vivoby measuring the antibody titers of BALB/c mice inoculated with OmlA encapsulated intopNIPAM nanogels compared to OmlA plus aluminum hydroxide adjuvant. The results proved the ability of nanogels to stimulate a humoral immune response. Therefore, we have demonstrated thatpNIPAM nanogels can be used as an efficient platform for vaccine nanocarriers.


Subject(s)
Acrylic Resins , Vaccines , Mice , Swine , Animals , Nanogels , Tissue Distribution , Acrylic Resins/chemistry
8.
Immunology ; 169(1): 27-41, 2023 05.
Article in English | MEDLINE | ID: mdl-36371679

ABSTRACT

Although the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, represents an efficient vector for vaccine development. Baculovirus surface display induces strong humoral responses against viruses and parasites. A novel strategy based on capsid display carrying foreign antigens in the AcMNPV particle further improved the immune response by eliciting CD8+ T cell activation. In this study, we analyze the intracellular mechanisms and signalling pathways involved in CD8+ T cell activation by capsid display. Our results show that baculovirus can attach to the cell surface, enter dendritic cells (DCs), transit within endocytic vesicles and escape to the cytosol for further degradation by the proteasome. We found that the availability of viral proteins, endosomal acidification, and proteasome activity are needed for efficient Major Histocompatibility Complex class-I presentation by baculovirus carrying Ovalbumin in the viral capsid. Importantly, we demonstrated with this strategy that the induction of cytotoxic T cells and IL-12 production by DCs are TLR9-dependent and STING-independent. Finally, our study shows differential intracellular processing for capsid and surface baculovirus proteins in DCs and highlights the role of different danger receptors during cytotoxic T cell priming through the capsid display delivery system, which could lead to improved baculovirus-based vaccines development.


Subject(s)
Antineoplastic Agents , Baculoviridae , Baculoviridae/genetics , Baculoviridae/metabolism , Capsid , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Proteasome Endopeptidase Complex/metabolism , Capsid Proteins/genetics
9.
Infect Genet Evol ; 99: 105261, 2022 04.
Article in English | MEDLINE | ID: mdl-35231666

ABSTRACT

The epidemiological surveillance of SARS-CoV-2 by means of whole-genome sequencing has revealed the emergence and co-existence of multiple viral lineages or subtypes throughout the world. Moreover, it has been shown that several subtypes of this virus display particular phenotypes, such as increased transmissibility or reduced susceptibility to neutralizing antibodies, leading to the denomination of Variants of Interest (VOI) or Variants of Concern (VOC). Thus, subtyping of SARS-CoV-2 is a crucial step for the surveillance of this pathogen. Here, we present Covidex, an open-source, alignment-free machine learning subtyping tool. It is a shiny web app that allows an ultra-fast and accurate classification of SARS-CoV-2 genome sequences into the three most used nomenclature systems (GISAID, Nextstrain, Pango lineages). It also categorizes input sequences as VOI or VOC, according to current definitions. The program is cross-platform compatible and it is available via Source-Forge https://sourceforge.net/projects/covidex or via the web application http://covidex.unlu.edu.ar.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Whole Genome Sequencing
10.
Vet Sci ; 8(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34822651

ABSTRACT

The huge variety of viruses affecting swine represents a global threat. Since vaccines against highly contagious viruses last several days to induce protective immune responses, antiviral strategies for rapid control of outbreak situations are needed. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an insect virus, has been demonstrated to be an effective vaccine vector for mammals. Besides the ability to display or transduce heterologous antigens, it also induces strong innate immune responses and provides IFN-mediated protection against lethal challenges with viruses like foot-and-mouth disease virus (FMDV) in mice. Thus, the aim of this study was to evaluate the ability of AcMNPV to induce IFN production and elicit antiviral activity in porcine peripheral blood mononuclear cells (PBMCs). Our results demonstrated that AcMNPV induced an IFN-α-mediated antiviral activity in PBMCs in vitro. Moreover, the inoculation of AcMNPV in piglets led to the production of type I and II IFNs in sera from inoculated animals and antiviral activities against vesicular stomatitis virus (VSV) and FMDV measured by in vitro assays. Finally, it was demonstrated that the pseudotyping of AcMNPV with VSV-G protein, but not the enrichment of the AcMNPV genome with specific immunostimulatory CpG motifs for the porcine TLR9, improved the ability to induce IFN-α production in PBMCs in vitro. Together, these results suggest that AcMNPV is a promising tool for the induction of IFNs in antiviral strategies, with the potential to be biotechnologically improved.

11.
Viruses ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204224

ABSTRACT

Pestivirus envelope protein E2 is crucial to virus infection and accomplishes virus-receptor interaction during entry. However, mapping of E2 residues mediating these interactions has remained unexplored. In this study, to investigate the structure-function relationship for a ß-hairpin motif exposed to the solvent in the crystal structure of bovine viral diarrhea virus (BVDV) E2, we designed two amino acidic substitutions that result in a change of electrostatic potential. First, using wild type and mutant E2 expressed as soluble recombinant proteins, we found that the mutant protein had reduced binding to susceptible cells compared to wild type and diminished ability to inhibit BVDV infection, suggesting a lower affinity for BVDV receptors. We then analyzed the effect of ß-hairpin mutations in the context of recombinant viral particles. Mutant viruses recovered from cell culture supernatant after transfection of recombinant RNA had almost completely inhibited ability to re-infect susceptible cells, indicating an impact of mutations on BVDV infectivity. Finally, sequential passaging of the mutant virus resulted in the selection of a viral population in which ß-hairpin mutations reverted to the wild type sequence to restore infectivity. Taken together, our results show that this conserved region of the E2 protein is critical for the interaction with host cell receptors.


Subject(s)
Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization , Amino Acid Substitution , Animals , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/chemistry , Inverted Repeat Sequences/physiology , Protein Binding , Viral Envelope Proteins/genetics
12.
Biotechnol Bioeng ; 118(10): 4129-4137, 2021 10.
Article in English | MEDLINE | ID: mdl-34264519

ABSTRACT

Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this study, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed. We established a rapid production process for SARS-CoV-2 S protein that showed immunoreactivity for anti-SARS-CoV-2 antibodies and was used as a single antigen for developing the ELISA method with high sensitivity (96.2%) and specificity (98.8%). Our findings provide an efficient and cost-effective platform for large-scale S protein production, and the scale-up is linear, thus avoiding the use of complex equipment like bioreactors.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Animals , Larva/metabolism , Larva/virology , Nucleopolyhedroviruses , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera
13.
PeerJ ; 9: e11227, 2021.
Article in English | MEDLINE | ID: mdl-34178434

ABSTRACT

RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibility-guided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further.

14.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32796076

ABSTRACT

The baculovirus Autographa californica multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively. Overall, our results suggest the existence of two different pathways involved in the establishment of the antiviral response, both dependent on STING expression. Particularly, the cGAS-STING pathway resulted in the more relevant production of beta interferon (IFN-ß) and IFN-λ1 in response to baculovirus infection. In human epithelial cells, IFN-λ1 production was also induced in a cGAS-independent and DNA-protein kinase (DNA-PK)-dependent manner. Finally, we demonstrated that these cellular responses toward baculovirus infection affect the efficiency of transduction of baculovirus vectors.IMPORTANCE Baculoviruses are nonpathogenic viruses that infect mammals, which, among other applications, are used as vehicles for gene delivery. Here, we demonstrated that the cytosolic DNA sensor cGAS recognizes baculoviral DNA and that the cGAS-STING axis is primarily responsible for the attenuation of transduction in human and mouse cell lines through type I and type III IFNs. Furthermore, we identified DNA-dependent protein kinase (DNA-PK) as a cGAS-independent and alternative DNA cytosolic sensor that contributes less to the antiviral state in baculovirus infection in human epithelial cells than cGAS. Knowledge of the pathways involved in the response of mammalian cells to baculovirus infection will improve the use of this vector as a tool for gene therapy.


Subject(s)
Baculoviridae/genetics , Interferon-beta/genetics , Interferons/genetics , Interleukins/genetics , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Animals , Baculoviridae/metabolism , Base Sequence , CRISPR-Cas Systems , DNA, Viral/genetics , DNA, Viral/immunology , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression Regulation , HEK293 Cells , Host Specificity , Humans , Interferon-beta/immunology , Interferons/immunology , Interleukins/immunology , Membrane Proteins/immunology , Mice , NIH 3T3 Cells , Nucleotidyltransferases/immunology , Sf9 Cells , Signal Transduction , Spodoptera , Transduction, Genetic
15.
Antiviral Res ; 180: 104850, 2020 08.
Article in English | MEDLINE | ID: mdl-32574690

ABSTRACT

Foot-and-mouth disease is a viral illness that affects cloven-hoofed animals causing serious economic losses. Inactivated vaccines against its causative agent, foot-and-mouth disease virus (FMDV), require approximately seven days to induce protection. Therefore, antiviral strategies are needed to provide earlier protection and to stop the spread of this highly contagious virus during outbreak situations. In this way, our group has previously demonstrated that the baculovirus (BV) Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an insect virus with immunostimulant effects, induces a nonspecific antiviral status that protects C57BL/6 mice against a lethal challenge with FMDV A/Arg/01 at 3 hours or 3 days post inoculation. In this work, we studied the immunological mechanisms involved in this protection. Firstly, we compared the protection elicited by AcMNPV in wild type mice and in knock-out mice lacking the subunit IFNAR1 of the receptor for type I interferons (IFNs). Our results showed that type I IFNs are key to prevent the death of the animals after the FMDV challenge. On the other hand, we evaluated the role of NK and NKT cells by depleting these cell subsets with anti-NK1.1 monoclonal antibody. These cells proved to be necessary for the induction of IFN-γ by AcMNPV and to prevent the onset of a severe disease after the FMDV challenge. We propose BV as a novel tool for the development of antiviral strategies because of the high levels of IFNs induced and the NK/NKT cells-mediated immune response elicited.


Subject(s)
Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Interferon Type I/immunology , Natural Killer T-Cells/immunology , Nucleopolyhedroviruses/immunology , Viral Vaccines , Animals , Female , Foot-and-Mouth Disease Virus/immunology , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Receptor, Interferon alpha-beta/genetics , Sf9 Cells , Spodoptera , Vaccination , Viral Vaccines/immunology
16.
Microb Pathog ; 141: 104010, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32004623

ABSTRACT

Leishmaniasis is caused by several species of protozoan parasites of the genus Leishmania and represents an important global health problem. Leishmania braziliensis in particular is responsible of cutaneous and mucocutaneous forms of this parasitosis, with prevalence in Latin America. In the present work, we describe in L. braziliensis promastigotes and amastigotes the presence of a Phospholipase A1 (PLA1) activity, an enzyme that catalyses extensive deacylation of phospholipids like phosphatidylcholine. In order to deepen the knowledge about L. braziliensis PLA1, the cloning and expression of the gene that codifies for this enzyme was carried out in a baculovirus expression system with the obtaintion of a purified recombinant protein that displayed PLA1 activity. Given that this is the first molecular and functional protein characterization of a PLA1 in the Leishmania genus, we also performed a phylogenetic analysis of this gene throughout 12 species whose genome sequences were available. The results presented here will contribute to increase the knowledge about trypanosome phospholipases, which could be novel and valuable as potential targets to fight neglected diseases like Leishmaniasis.


Subject(s)
Leishmania braziliensis , Phospholipases A1 , Animals , Baculoviridae/genetics , Cloning, Molecular/methods , Gene Expression , Genes, Protozoan , Latin America , Leishmania braziliensis/genetics , Leishmania braziliensis/metabolism , Leishmaniasis, Cutaneous/parasitology , Phospholipases A1/genetics , Phospholipases A1/isolation & purification , Phospholipases A1/metabolism , Phylogeny , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sf9 Cells
17.
An Acad Bras Cienc ; 91(3): e20180568, 2019.
Article in English | MEDLINE | ID: mdl-31596388

ABSTRACT

Cyclodextrin glycosyltransferases (CGTases) are important enzymes in the biotechnology field because they catalyze starch conversion into cyclodextrins and linear oligosaccharides, which are used in food, pharmaceutical and cosmetic industries. The CGTases are classified according to their product specificity in α-, ß-, α/ß- and γ-CGTases. As molecular markers are the preferred tool for bacterial identification, we employed six molecular markers (16S rRNA, dnaK, gyrB, recA, rpoB and tufA) to test the identification of a CGTase-producing bacterial strain (DF 9R) in a phylogenetic context. In addition, we assessed the phylogenetic relationship of CGTases along bacterial evolution. The results obtained here allowed us to identify the strain DF 9R as Paenibacillus barengoltzii, and to unveil a complex origin for CGTase types during archaeal and bacterial evolution. We postulate that the α-CGTase activity represents the ancestral type, and that the γ-activity may have derived from ß-CGTases.


Subject(s)
Bacillus/genetics , Bacillus/isolation & purification , Glucosyltransferases/genetics , Phylogeny , Bacillus/classification , Genes, Essential , Genetic Markers , Genome, Bacterial , Glucosyltransferases/classification , Glucosyltransferases/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis
18.
J Mol Microbiol Biotechnol ; 29(1-6): 83-90, 2019.
Article in English | MEDLINE | ID: mdl-32259815

ABSTRACT

Bovine tuberculosis (bTB) is a disease produced by Mycobacterium bovis that affects livestock, wild animals, and humans. The classical diagnostic method to detect bTB is measuring the response induced with the intradermal injection of purified protein derivative of M. bovis (PPDb). Another ancillary bTB test detects IFN-γ produced in whole blood upon stimulation with PPDb, protein/peptide cocktails, or individual antigens. Among the most used M. bovis antigens in IFN-γ assays are the secreted proteins ESAT-6 and CFP-10, which together with antigen Rv3615c improve the sensitivity of the test in comparison to PPDb. Protein reagents for immune stimulation are generally obtained from Escherichia coli, because this bacterium produces a high level of recombinant proteins. However, E. coli recombinant antigens are in general contaminated with lipopolysaccharides and other components that produce non-specific IFN-γ secretion in in vitro assays. In this work, we produced the relevant ESAT-6, CFP-10, and Rv3615c M. bovis antigens as fusions to the polyhedrin protein from the baculovirus AcMNPV. We obtained chimeric proteins effectively incorporated to the occlusion bodies and easily purified the recombinant polyhedra with no reactive contaminants. In an IFN-γ assay, these fusion proteins showed equivalent sensibility but better specificity than the same M. bovis proteins produced in E. coli.


Subject(s)
Antigens, Bacterial/biosynthesis , Baculoviridae/metabolism , Mycobacterium bovis/immunology , Animals , Bacterial Proteins/biosynthesis , Cattle , Escherichia coli/metabolism , Interferon-gamma Release Tests , Occlusion Bodies, Viral , Recombinant Proteins/biosynthesis
19.
Virus Res ; 260: 67-77, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30472094

ABSTRACT

The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac12 gene, which is conserved in ten other baculovirus, codes a predicted 217 amino acid protein of unknown function. In this study, we investigated the role of ac12 during baculovirus infection, by generating an ac12 knockout virus. The transfection of the recombinant genome in insect cells resulted in unaltered viral dispersion and occlusion body production when compared to the control bacmid. This finding demonstrates that ac12 is a non-essential gene. Transmission and scanning electron microscopy (SEM) analyses showed that ac12 knockout virus produced occlusion bodies morphologically similar to those obtained with the control and capable to occlude virions. However, a slight but significant size difference was detected by SEM observation of purified occlusion bodies. This difference suggests that ac12 may be involved in regulatory pathways of polyhedrin production or occlusion body assembly without affecting either viral occlusion or oral infectivity in Rachiplusia nu larvae. This was evidenced by bioassays that showed no significant differences in the conditions tested. A qPCR analysis of viral gene expression during infection evidenced regulatory effects of ac12 over some representative genes of different stages of the viral cycle. In this study, we also showed that ac12 is transcribed at early times after infection and remains detectable up to 72 hours post-infection. The mRNA is translated during the infection and results in a protein that encodes an F-box domain that interacts in vivo and in vitro with S phase kinase associated protein 1 (SKP1) adaptor protein, which is potentially involved in protein ubiquitination pathways.


Subject(s)
Host-Pathogen Interactions , Nucleopolyhedroviruses/physiology , S-Phase Kinase-Associated Proteins/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Gene Knockout Techniques , Inclusion Bodies, Viral/ultrastructure , Larva/virology , Lepidoptera/virology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Protein Binding , Viral Proteins/genetics , Virus Replication
20.
3 Biotech ; 8(11): 457, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30370198

ABSTRACT

Here, we developed a diagnostic ELISA for foot-and-mouth disease using recombinant occlusion bodies (rOBs) of baculovirus. We fused Δ3AB1-3, a polypeptide derived from non-structural proteins of foot-and-mouth disease virus, to polyhedrin (POLH), the major constituent of OBs, under polh promoter. To further assess the most convenient strategy to improve yields, we designed two recombinant baculoviruses, vPOLH and vPOLHE44G. These carried the sequence of the fusion protein POLH-Δ3AB1-3 with an additional copy in cis of polh or polh E44G , respectively, under p10 promoter. Our results show that both viruses expressed POLH-Δ3AB1-3, which was detected by western blot in purified rOBs with anti-POLH and anti-3AB1 antibodies. We also found that vPOLHE44G produced larger polyhedra and a significant increase of antigen yield (p < 0.01). Furthermore, the chimeric protein POLH-Δ3AB1-3 was recognized by sera from experimentally infected animals, showing that translational fusion to POLH does not alter the antigenicity of Δ3AB1-3. Finally, the rOBs were successfully used in an ELISA test to differentiate infected from vaccinated animals. Taken together, these results demonstrate the great potential of rOBs to develop diagnostic schemes adaptable to animal infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...