Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cells ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38667282

ABSTRACT

Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.


Subject(s)
GTP-Binding Proteins , Nervous System Neoplasms , Protein Glutamine gamma Glutamyltransferase 2 , Animals , Humans , GTP-Binding Proteins/metabolism , Nervous System Neoplasms/pathology , Nervous System Neoplasms/enzymology , Nervous System Neoplasms/metabolism , Transglutaminases/metabolism
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279251

ABSTRACT

Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and ß-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.


Subject(s)
Bicyclic Monoterpenes , Diabetes Mellitus, Type 2 , Oils, Volatile , Mice , Animals , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Insulin, Regular, Human/pharmacology , Glucose/metabolism
3.
Cancers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627054

ABSTRACT

Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.

4.
Genes (Basel) ; 14(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37510258

ABSTRACT

BACKGROUND: The use of NGS technology has rapidly increased during the last decade, and many new monogenic neurodevelopmental disorders have emerged. Pathogenic variants in the neuronal CAMK2A gene have been recently associated with "intellectual developmental disorder, autosomal dominant 53″ (OMIM#617798), a syndrome characterized by variable clinical manifestations including mild to severe intellectual disability, delayed psychomotor development, delayed or absent speech, delayed walking, seizures, dysmorphic features and behavioral psychiatric manifestations as autism spectrum disorders, aggressive behavior, and hyperactivity. CAMK2A (OMIM*114078) encodes for a subunit of the calcium/calmodulin-dependent serine/threonine kinase II (CaMKII), which is predominately expressed in the brain, where it plays critical roles in synaptic plasticity, learning, and memory as well as in neuronal migration. METHODS AND RESULTS: We hereby describe a thirty-five-year-old woman affected by severe intellectual disability with epileptic encephalopathy. We performed exome sequencing and found a de novo heterozygous variant in the CAMK2A gene (NM_171825.2: c.874_876delCTT; p.Lys292del), which was fully correlated with her phenotype. This is the first report of an inframe single amino acid deletion in a patient affected by intellectual developmental disorder autosomal dominant 53. The variant is predicted to affect protein structure and function and interaction with other proteins and hits a crucial functional site. DISCUSSION: We discuss our variant in relation to previously reported variants and with the objective of delineating possible genotype-phenotype correlations.


Subject(s)
Brain Diseases , Intellectual Disability , Neurodevelopmental Disorders , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Lysine , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
6.
Life (Basel) ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836788

ABSTRACT

Curcumin (CUR) is a natural molecule that is unstable due to the presence of a bis-ketone. To obtain more stable derivatives in biological fluids, the bis-ketone was replaced with pyrazole or O-substituted oximes. Their stability in solution was studied by UV-visible spectrophotometry. The effects on proliferation were studied by MTT assay and/or clonogenicity assay. Induction of apoptosis was evaluated by annexin V staining and Western blot analysis. The bioavailability was obtained from the analysis of the molecular chemical-physical characteristics. The replacement of the bis-ketone with a pyrazole ring or O-substituted oximes improved the stability of all the CUR-derivative molecules. These derivatives were more stable than CUR in solution and were generally cytotoxic on a panel of cancer cell lines tested, and they promoted caspase-dependent apoptosis. Derivative 1 was the most potent in the osteosarcoma (OS) lines. With respect to CUR, this derivative showed cytotoxicity at least three times higher in the MTT assay. In addition, in the clonogenic assay, 1 maintained the activity in conditions of long treatment presumably by virtue of its improved stability in biological fluids. Notably, 1 should have improved chemical-physical characteristics of bioavailability with respect to CUR, which should allow for reaching higher blood levels than those observed in the CUR trials. In conclusion, 1 should be considered in future clinical studies on the treatment of OS, either alone or in combination with other medications currently in use.

7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768681

ABSTRACT

Despite curcumin (CUR) inhibiting cell proliferation in vitro by activating apoptotic cell death, its use in pharmacological therapy is hampered by poor solubility, low stability in biological fluids, and rapid removal from the body. Therefore, CUR-derivatives with better biological and chemical-physical characteristics are needed. The bis-ketone moiety of CUR strongly influences its stability in slightly alkaline solutions such as plasma. Here, we considered its replacement with isoxazole, beta-enamine, or oxime groups to obtain more stable derivatives. The evaluation of the chemical-physical characteristics showed that only of the isoxazole derivatives 2 and 22 had better potential than CUR in terms of bioavailability. The UV-visible spectrum analysis showed that derivatives 2 and 22 had better stability than CUR in solutions mimicking the biological fluids. When tested on a panel of cell lines, derivatives 2 and 22 had marked cytotoxicity (IC50 = 0.5 µM) compared with CUR only (IC50 = 17 µM) in the chronic myeloid leukemia (CML)-derived K562 cell line. The derivative 22 was the more selective for CML cells. When administered at the average concentration found for CUR in the blood of patients, derivatives 2 and 22 had potent effects on cell cycle progression and apoptosis initiation, while CUR was ineffective. The apoptotic effect of derivatives 2 and 22 was associated with low necrosis. In addition, derivative 22 was able to reverse drug resistance in K562 cells resistant to imatinib (IM), the reference drug used in CML therapy. The cytotoxicity of derivative 22 on IM-sensitive and resistant cells was associated with upregulation of FOXN3 and CDKN1A expression, G2/M arrest, and triggering of apoptosis. In conclusion, derivative 22 has chemical-physical characteristics and biological effects superior to CUR, which allow us to hypothesize its future use in the therapy of CML and CML forms resistant to IM, either alone or in combination with this drug.


Subject(s)
Antineoplastic Agents , Curcumin , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Antineoplastic Agents/therapeutic use , K562 Cells , Apoptosis , Drug Resistance, Neoplasm , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
8.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768978

ABSTRACT

Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.


Subject(s)
Melanoma , Skin Neoplasms , Melanoma/pathology , Skin Neoplasms/drug therapy , Immunomodulating Agents , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plants
9.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499332

ABSTRACT

Caffeic acid (CA) has shown antitumor activity in numerous solid and blood cancers. We have recently reported that CA is active in reducing proliferation and triggering apoptosis in both Imatinib-sensitive and resistant Chronic Myeloid Leukemia (CML) cells. Tissue transglutaminase type 2 (TG2) enzyme is involved in cell proliferation and apoptosis of numerous types of cancer. However, its activity has different effects depending on the type of tumor. This work investigated the possible involvement of TG2 activation in the triggering of CA-dependent anticancer effects on the K562 cell line, which was studied as a model of CML. CA-dependent changes in TG2 activity were compared with the effects on cell proliferation and apoptosis. The use of N-acetylcysteine (NAC), an antioxidant molecule, suggested that the antiproliferative effect of CA was due to the increase in reactive oxygen species (ROS). The use of a TG2 inhibitor showed that TG2 activity was responsible for the increase in ROS generated by CA and reduced both caspase activation and triggering of CA-dependent apoptosis. The knocking-down of TGM2 transcripts confirmed the crucial involvement of TG2 activation in CML cell death. In conclusion, the data reported, in addition to ascertaining the important role of TG2 activation in the antiproliferative and pro-apoptotic mechanism of CA allowed us to hypothesize a possible therapeutic utility of the molecules capable of triggering the activation pathways of TG2 in the treatment of CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Apoptosis , Drug Resistance, Neoplasm
10.
Molecules ; 27(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431901

ABSTRACT

BACKGROUND: Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS: Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS: The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS: Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.


Subject(s)
Dihydrolipoamide Dehydrogenase , Melanoma , Humans , Vemurafenib/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proteomics , Chromatography, Liquid , Drug Resistance, Neoplasm , Cell Line, Tumor , Tandem Mass Spectrometry , Melanoma/drug therapy , Melanoma/metabolism
11.
Sci Rep ; 12(1): 18877, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344536

ABSTRACT

Bariatric surgery (BS) is an effective intervention for severe obesity and associated comorbidities. Although several studies have addressed the clinical and metabolic effects of BS, an integrative analysis of the complex body response to surgery is still lacking. We conducted a longitudinal data study with 36 patients with severe obesity who were tested before, 6 and 12 months after restrictive BS for more than one hundred blood biomarkers, including clinical, oxidative stress and metabolic markers, peptide mediators and red blood cell membrane lipids. By using a synthetic data-driven modeling based on principal component and correlation analyses, we provided evidence that, besides the early, well-known glucose metabolism- and weight loss-associated beneficial effects of BS, a tardive, weight-independent increase of the hepatic cholesterol metabolism occurs that is associated with potentially detrimental inflammatory and metabolic effects. Canonical correlation analysis indicated that oxidative stress is the most predictive feature of the BS-induced changes of both glucose and lipids metabolism. Our results show the power of multi-level correlation analysis to uncover the network of biological pathways affected by BS. This approach highlighted potential health risks of restrictive BS that are disregarded with the current practice to use weight loss as surrogate of BS success.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Humans , Bariatric Surgery/methods , Weight Loss/physiology , Weight Gain , Risk Assessment
12.
J Inflamm Res ; 15: 5677-5685, 2022.
Article in English | MEDLINE | ID: mdl-36238762

ABSTRACT

Objective and Design: Cystic fibrosis-related diabetes (CFRD) is a severe complication associated with increased morbidity and mortality in cystic fibrosis (CF) patients. Extensive inflammatory state in CF leads to pancreas damage and insulin resistance with consequent altered glucose tolerance and CFRD development. The aim of the present study was to identify circulating levels of inflammatory markers specifically associated with impaired glucose tolerance (IGT) and overt CFRD in a sample of young adults with CF. Materials and Methods: Sixty-four CF outpatients, without evident active pulmonary exacerbation, infectious and autoimmune diseases, were enrolled in the study and the levels of 45 inflammatory serum mediators were measured through x magnetic bead panel multiplex technology. Results: Serum levels of PDGF-AA, CCL20/MIP3α, IFNα, CCL11/eotaxin, CXCL1/GROα, GMCSF, B7H1/PDL1, IL13, IL7, VEGF, and TGFα were all significantly (p<0.05) elevated in patients according to glycemic status and directly correlated with glycated hemoglobin and C-reactive protein levels. Conclusion: Our findings suggest that increased levels of specific circulating inflammatory mediators are directly associated with impaired glucose tolerance in CF patients, thus, potentially implicating them in CFRD pathogenesis and warranting larger longitudinal studies to validate their monitoring as predictor of CFRD onset.

13.
Oncogene ; 41(34): 4055-4065, 2022 08.
Article in English | MEDLINE | ID: mdl-35851846

ABSTRACT

Dysregulated fatty acid metabolism interacts with oncogenic signals, thereby worsening tumor aggressiveness. The stearoyl-CoA desaturating enzymes, SCD1 and SCD5, convert of saturated fatty acids to monounsaturated fatty acids. While SCD1 is frequently overexpressed in tumor cells and has been widely studied, SCD5 has both limited expression and poor characterization. Here we evaluated, in vitro and in vivo, the effects of SCD5 overexpression in a metastatic clone of 4T1. The results showed SCD5-driven reprogramming of fatty acid metabolism, involving desaturation of stearic acid to oleic acid, which eventually blocked SPARC secretion. The latter event reduced the aggressiveness of the 4T1 subclone by decreasing the ECM deposition and reverting the Epithelial to Mesenchymal Transition (EMT) status. Variation of the fatty acid profile by SCD5-gene transduction or the direct administration oleic acid reduces the immune suppressive activity of myeloid cells and promoting granulocytic myeloid-derived suppressor cell maturation, eventually favoring T-cell activation. The less immunosuppressive microenvironment generated by SCD5 overexpression was enhanced in Sparc-KO mice, indicating that both extracellular and endogenous SPARC additively regulate myeloid cell-suppressive activities. Overall, our data sheds light on exploring the oleic acid-dependent inhibition of SPARC secretion as a possible mechanism to reduce breast cancer malignancy.


Subject(s)
Stearoyl-CoA Desaturase , Triple Negative Breast Neoplasms , Animals , Disease Models, Animal , Epithelial-Mesenchymal Transition , Fatty Acids/metabolism , Humans , Mice , Oleic Acids , Osteonectin/genetics , Stearoyl-CoA Desaturase/metabolism , Tumor Microenvironment
14.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208196

ABSTRACT

Nutraceuticals are biologically active molecules present in foods; they can have beneficial effects on health, but they are not available in large enough quantities to perform this function. Plant metabolites, such as polyphenols, are widely diffused in the plant kingdom, where they play fundamental roles in plant development and interactions with the environment. Among these, flavonoids are of particular interest as they have significant effects on human health. In vitro and/or in vivo studies described flavonoids as essential nutrients for preventing several diseases. They display broad and promising bioactivities to fight cancer, inflammation, bacterial infections, as well as to reduce the severity of neurodegenerative and cardiovascular diseases or diabetes. Therefore, it is not surprising that interest in flavonoids has sharply increased in recent years. More than 23,000 scientific publications on flavonoids have described the potential anticancer activity of these natural molecules in the last decade. Studies, in vitro and in vivo, show that flavonoids exhibit anticancer properties, and many epidemiological studies confirm that dietary intake of flavonoids leads to a reduced risk of cancer. This review provides a glimpse of the mechanisms of action of flavonoids on cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Flavonoids/pharmacology , Inflammation/drug therapy , Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Flavonoids/chemistry , Humans , Inflammation/metabolism , Inflammation/pathology , Neoplasms/metabolism , Neoplasms/pathology
15.
Molecules ; 26(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199192

ABSTRACT

The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to the choice of experimental models where proliferation, differentiation and immune responses are differently affected. The aim of the present study was to investigate the effects of one of the most interesting bioactive compounds in coffee, i.e., caffeine, using a cellular model of melanoma at a defined differentiation level. A preliminary in silico analysis carried out on public gene-expression databases identified genes potentially involved in caffeine's effects and suggested some specific molecular targets, including tyrosinase. Proliferation was investigated in vitro on human melanoma initiating cells (MICs) and cytokine expression was measured in conditioned media. Tyrosinase was revealed as a key player in caffeine's mechanisms of action, suggesting a crucial role in immunomodulation through the reduction in IL-1ß, IP-10, MIP-1α, MIP-1ß and RANTES secretion onto MICs conditioned media. The potent antiproliferative effects of caffeine on MICs are likely to occur by promoting melanin production and reducing inflammatory signals' secretion. These data suggest tyrosinase as a key player mediating the effects of caffeine on melanoma.


Subject(s)
Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Computer Simulation/statistics & numerical data , Melanins/metabolism , Melanoma/drug therapy , Monophenol Monooxygenase/metabolism , Cell Differentiation , Cell Line, Tumor , Computational Biology/methods , Databases, Genetic , Gene Expression Regulation , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology
16.
Cell Death Dis ; 12(7): 636, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155195

ABSTRACT

Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-ß5, Survivin, TGF-ß, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.


Subject(s)
Biomarkers, Tumor/blood , Extracellular Vesicles/metabolism , Neoplasm Proteins/blood , Prostatic Neoplasms/blood , Proteome , Proteomics , Adult , Aged , Cell Line, Tumor , Extracellular Vesicles/ultrastructure , Humans , Male , Middle Aged , Predictive Value of Tests , Prostatic Neoplasms/ultrastructure , Protein Array Analysis , Reproducibility of Results , Retrospective Studies
17.
Acta Neuropsychiatr ; 33(5): 267-272, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33928890

ABSTRACT

OBJECTIVES: Identifying an objective, laboratory-based diagnostic tool (e.g. changes in gene expression), when used in conjunction with disease-specific clinical assessment, could increase the accuracy of the effectiveness of a therapeutic intervention. METHODS: We assessed the association between treatment outcome and blood RNA expression before the therapeutic intervention to post-treatment (after 1 year) of five autism spectrum disorder (ASD) toddlers who underwent an intensive cognitive-behavioural intervention integrated with psychomotor and speech therapy. RESULTS: We found 113 significant differentially expressed genes enriched for the nervous system, immune system, and transcription and translation-related pathways. Some of these genes, as MALAT-1, TSPO, and CFL1, appear to be promising candidates. CONCLUSIONS: Our findings show that changes in peripheral gene expression could be used in conjunction with clinical scales to monitor a rehabilitation intervention's effectiveness in toddlers affected by ASD. These results need to be validated in a larger cohort.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Biomarkers/metabolism , Integrative Medicine/methods , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/psychology , Case-Control Studies , Child, Preschool , Cofilin 1 , Cognitive Behavioral Therapy/methods , Female , Gene Expression , Genome-Wide Association Study/methods , Humans , Immune System/metabolism , Male , Nervous System/metabolism , Protein Biosynthesis/genetics , RNA, Long Noncoding , Receptors, GABA , Transcription, Genetic , Treatment Outcome , Up-Regulation
18.
Int J Mol Sci ; 22(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562019

ABSTRACT

Among the phenolic acids tested on the K562 cell line, a model of chronic myeloid leukemia (CML), caffeic acid (CA) was biologically active on sensitive and imatinib (IM)-resistant cells at micro-molar concentration, either in terms of reduction of cell proliferation or triggering of apoptosis. The CA treatment provoked mitochondrial membrane depolarization, genomic DNA fragmentation and phosphatidylserine exposure, hallmarks of apoptosis. Cell cycle analysis following the treatment with comparable cytotoxic concentrations of IM or CA showed marked differences in the distribution profiles. The reduction of cell proliferation by CA administration was associated with increased expression of two cell cycle repressor genes, CDKN1A and CHES1, while IM at a cytotoxic concentration increased the CHES1 but not the CDKN1A expression. In addition, CA treatment affected the proliferation and triggered the apoptosis in IM-resistant cells. Taken together, these data suggested that CA induced the anti-proliferative effect and triggered apoptosis of CML cells by a different mechanism than IM. Finally, the combined administration of IM and CA at suboptimal concentrations evidenced a synergy of action in determining the anti-proliferative effect and triggering apoptosis. The ability of CA to potentiate the anti-leukemic effect of IM highlighted the nutraceutical potential of CA in CML.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caffeic Acids/pharmacology , Cell Proliferation/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , DNA Fragmentation/drug effects , Drug Resistance, Neoplasm/physiology , Drug Synergism , Forkhead Transcription Factors/biosynthesis , Humans , Mitochondrial Membranes/physiology
19.
Amino Acids ; 53(1): 63-72, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33398525

ABSTRACT

Differentiation of a human aggressive PC-3 cancer cell line was obtained, in a previous investigation, by the synergic effect of α-tocopherol (α-TOC) and naringenin (NG). This combined treatment induced apoptosis and subsequent reduction of the PC-3 cell proliferation and invasion, by a pro-differentiating action. Since one of the peculiar characteristics of NG and α-TOC is their strong antioxidant activity, this study aimed to investigate their potential effect on the activity of the main enzymes involved in the antioxidant mechanism in prostate cancer cells. NG and α-TOC administered singularly or combined in the PC-3 cell line, affected the activity of several enzymes biomarkers of the cellular antioxidant activity, as well as the concentration of total glutathione (GSH + GSSG) and thiobarbituric acid reactive substances (TBARS). The combined treatment increased the TBARS levels and superoxide dismutase (SOD) activity, while decreased the glutathione S-transferase (GST), glutathione reductase (GR), and glyoxalase I (GI) activities. The results obtained indicate that a combined treatment with these natural compounds mitigated the oxidative stress in the human PC-3 cell line. In addition, a significant reduction of both ornithine decarboxylase (ODC) expression and intracellular levels of polyamines, both well-known positive regulators of cell proliferation, accompanied the reduction of oxidative stress observed in the combined α-TOC and NG treatment. Considering the established role of polyamines in cell differentiation, the synergism with NG makes α-TOC a potential drug for further study on the differentiation therapy in prostate cancer patients.


Subject(s)
Flavanones/pharmacology , Ornithine Decarboxylase/metabolism , Oxidative Stress/drug effects , alpha-Tocopherol/pharmacology , Antioxidants/metabolism , Cell Proliferation/drug effects , Drug Synergism , Glutathione/metabolism , Humans , Lipid Peroxidation/drug effects , Male , Oxidation-Reduction/drug effects , PC-3 Cells , Polyamines/metabolism , Prostatic Neoplasms/pathology , Thiobarbituric Acid Reactive Substances/metabolism
20.
Biomedicines ; 9(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467521

ABSTRACT

The therapeutic success of BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi) in BRAF-mutant melanoma is limited by the emergence of drug resistance, and several lines of evidence suggest that changes in the tumor microenvironment can play a pivotal role in acquired resistance. The present study focused on secretome profiling of melanoma cells sensitive or resistant to the BRAFi vemurafenib. Proteomic and cytokine/chemokine secretion analyses were performed in order to better understand the interplay between vemurafenib-resistant melanoma cells and the tumor microenvironment. We found that vemurafenib-resistant melanoma cells can influence dendritic cell (DC) maturation by modulating their activation and cytokine production. In particular, human DCs exposed to conditioned medium (CM) from vemurafenib-resistant melanoma cells produced higher levels of pro-inflammatory cytokines-that potentially facilitate melanoma growth-than DCs exposed to CM derived from parental drug-sensitive cells. Bioinformatic analysis performed on proteins identified by mass spectrometry in the culture medium from vemurafenib-sensitive and vemurafenib-resistant melanoma cells suggests a possible involvement of the proteasome pathway. Moreover, our data confirm that BRAFi-resistant cells display a more aggressive phenotype compared to parental ones, with a significantly increased production of interferon-γ, interleukin-8, vascular-endothelial growth factor, CD147/basigin, and metalloproteinase 2 (MMP-2). Plasma levels of CD147/basigin and MMP-2 were also measured before the start of therapy and at disease progression in a small group of melanoma patients treated with vemurafenib or vemurafenib plus cobimetinib. A significant increment in CD147/basigin and MMP-2 was observed in all patients at the time of treatment failure, strengthening the hypothesis that CD147/basigin might play a role in BRAFi resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...