Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 10 15.
Article in English | MEDLINE | ID: mdl-31613219

ABSTRACT

Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease.


Subject(s)
Inflammation/pathology , Lung/pathology , Neutrophils/immunology , Pneumonia, Bacterial/pathology , Pseudomonas Infections/pathology , Animal Fins/injuries , Animal Fins/pathology , Animals , Benzothiazoles/administration & dosage , Cells, Cultured , Disease Models, Animal , ErbB Receptors/antagonists & inhibitors , Humans , Mice , Protein Kinase Inhibitors/administration & dosage , Treatment Outcome , Tyrphostins/administration & dosage , Zebrafish
2.
Part Fibre Toxicol ; 13: 6, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26857113

ABSTRACT

BACKGROUND: Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). METHODS: Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 µg/mL). RESULTS: Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. CONCLUSION: DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.


Subject(s)
Arterial Occlusive Diseases/chemically induced , Blood Platelets/drug effects , Carotid Stenosis/blood , Platelet Activation , Pneumonia/chemically induced , Quartz/toxicity , Soot/toxicity , Thrombosis/chemically induced , Vehicle Emissions/toxicity , Animals , Arterial Occlusive Diseases/blood , Blood Platelets/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Carotid Stenosis/chemically induced , Cells, Cultured , Fibrinolysis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation Mediators/blood , Male , Particle Size , Plasminogen Activator Inhibitor 1/metabolism , Platelet Adhesiveness/drug effects , Pneumonia/blood , Rats, Wistar , Thrombosis/blood , Time Factors , Tissue Plasminogen Activator/metabolism
3.
Am J Respir Cell Mol Biol ; 44(6): 840-51, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20693402

ABSTRACT

Exposure to air pollution containing diesel exhaust particulate (DEP) is linked to adverse cardiovascular events. This study tested the hypothesis that DEP not only causes direct endothelial cell injury, but also induces indirect endothelial cell activation via the release of soluble proinflammatory cytokines from macrophages. Human umbilical vein endothelial cells (HUVECs) and monocyte-derived macrophages (MDMs) were incubated with DEP (1-100 µg/ml; 24 h). Supernatants were analyzed for monocyte chemotactic protein (MCP)-1, IL6, IL8, and TNF-α. Indirect actions of DEP were investigated by incubating HUVECs with conditioned media from DEP-exposed MDMs in the presence and absence of the TNF-α inhibitor, etanercept. A modified Boyden chamber assay was used to determine whether HUVECs treated in this manner induced monocyte chemotaxis. Direct incubation with DEP induced a modest increase in MCP-1 concentration, but had no effect on IL-6 or IL-8 release from HUVECs. In contrast, direct treatment of MDMs with DEP had no effect on MCP-1, but elevated IL-8 and TNF-α concentrations. Incubation with conditioned media from DEP-exposed MDMs caused a dramatic amplification in MCP-1 and IL-6, but not IL-8, release from HUVECs. The potentiation of HUVEC activation was suppressed by TNF-α inhibition. MCP-1- and IL-6-containing HUVEC supernatants caused increased monocyte chemotaxis that was not inhibited by anti-MCP-1 antibodies. We conclude that DEP has only modest direct endothelial effects. In contrast, proinflammatory cytokines released from particle-laden MDMs appear to exacerbate endothelial activation after DEP exposure.


Subject(s)
Endothelial Cells/cytology , Macrophages/cytology , Vehicle Emissions , Cell Survival , Chemotaxis , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Macrophages/drug effects , Models, Biological , Monocytes/cytology , Particle Size , Phagocytosis , Tumor Necrosis Factor-alpha/metabolism
4.
J Endocrinol ; 197(3): 493-501, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18492815

ABSTRACT

Oestrogen protects the heart from ischaemic injury. The current study aims to characterise two novel oestrogen receptor (ER) ligands, an ER alpha agonist ERA-45 and an ER beta antagonist ERB-88, and then use them to investigate the roles of ER alpha and ER beta in mediating the cardioprotection by E from ischaemia-reperfusion injury in the rat. The ER ligands were characterised by gene transactivation assay using ER-transfected Chinese hamster ovary (CHO) cells and in bioavailability studies in vivo. Female rats (n=48) were ovariectomised and implanted with 17beta-oestradiol (17 beta E(2)) releasing or placebo pellets. ERA-45, ERB-88 or vehicle was administered for 5 days prior to ischaemia-reperfusion studies. Necrosis, neutrophil infiltration (myeloperoxidase activity) and oxidant stress production (electron paramagnetic resonance) from the area-at-risk were measured to assess reperfusion injury. The ER alpha agonist ERA-45 showed more than 35-fold selectivity for ER alpha compared with ER beta gene transactivation. In vitro, the ER beta antagonist ERB-88 inhibited transactivation by 17 beta E(2) via ER beta with 46-fold selectivity relative to inhibition via ER alpha. In vivo, 17 beta E(2) significantly reduced neutrophil infiltration, oxidant stress and necrosis following ischaemia and reperfusion. Cardioprotection by 17 beta E(2) was not inhibited by ERB-88 but was completely reproduced by ERA-45. In conclusion, protection of the rat heart after ischaemia-reperfusion by 17 beta E(2) is achieved through the reduction of cardiomyocyte death, neutrophil infiltration and oxygen-free radical availability.The results of this study indicate that these effects are primarily mediated via activation of ER alpha.


Subject(s)
Estradiol/pharmacology , Estrogen Receptor alpha/physiology , Estrogen Receptor beta/physiology , Myocardial Reperfusion Injury/prevention & control , Animals , Blood Pressure , CHO Cells , Cricetinae , Cricetulus , Estrogen Receptor alpha/agonists , Estrogen Receptor beta/antagonists & inhibitors , Female , Free Radicals , Neutrophil Infiltration , Rats , Rats, Wistar , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...