Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(37): 43914-43924, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491739

ABSTRACT

FluorAcryl 3298 (FA) is a UV-curable fluoroacrylate polymer commonly employed as a chemically resistant, hydrophobic, and oleophobic coating. Here, FA was used in a cleanroom-based microstructuring process to fabricate hydrophilic-in-hydrophobic (HiH) micropatterned surfaces containing femtoliter-sized well arrays. A short protocol involving direct UV photopatterning, an etching step, and final recovery of the hydrophobic properties of the polymer produced patterned substrates with micrometer resolution. Specifically, HiH microwell arrays were obtained with a well diameter of 10 µm and various well depths ranging from 300 nm to 1 µm with high reproducibility. The 300 nm deep microdroplet array (MDA) substrates were used for digital immunoassays, which presented a limit of detection in the attomolar range. This demonstrated the chemical functionality of the hydrophilic and hydrophobic surfaces. Furthermore, the 1 µm deep wells could efficiently capture particles such as bacteria, whereas the 300 nm deep substrates or other types of flat HiH molecular monolayers could not. Capturing a mixture of bacteria expressing red- and green-fluorescent proteins, respectively, served as a model for screening and selection of specific phenotypes using FA-MDAs. Here, green-fluorescent bacteria were specifically selected by overlaying a solution of gelatin methacryloyl (GelMA) mixed with a photoinitiator and using a high-magnification objective, together with custom pinholes, in a common fluorescence microscope to cross-link the hydrogel around the bacteria of interest. In conclusion, due to the straightforward processing, versatility, and low-price, FA is an advantageous alternative to more commonly used fluorinated materials, such as CYTOP or Teflon-AF, for the fabrication of HiH microwell arrays and other biphilic microstructures.


Subject(s)
Acrylic Resins/chemistry , Cell Separation/methods , Hydrocarbons, Fluorinated/chemistry , Immunoassay/methods , Single Molecule Imaging/methods , Antibodies/analysis , Antibodies/immunology , Cell Separation/instrumentation , Escherichia coli , Hydrophobic and Hydrophilic Interactions , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/instrumentation , Single Molecule Imaging/instrumentation , tau Proteins/chemistry , tau Proteins/immunology
2.
Nanoscale Adv ; 3(8): 2236-2244, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-36133765

ABSTRACT

In this paper, we demonstrate plasmonic color metasurfaces as large as ∼60 cm2 fabricated by deep UV projection lithography employing an innovative combination of resolution enhancement techniques. Briefly, in addition to the established off-axis dipole illumination, double- and cross-exposure resolution enhancement of lithography, we introduce a novel element, the inclusion of transparent assist features to the mask layout. With this approach, we demonstrate the fabrication of relief arrays having critical dimensions such as 159 nm nanopillars or 210 nm nanoholes with 300 nm pitches, which is near the theoretical resolution limit expressed by the Rayleigh criterion for the 248 nm lithography tool used in this work. The type of surface structure, i.e. nanopillar or nanohole, and their diameters can be tailored simply by changing the width of the assist features included in the mask layout. By coating the obtained nanopatterns with thin layers of either Au or Al, we observe color spectra originating from the phenomenon known as localized surface plasmon resonance (LSPR). We demonstrate the generation of color palettes representing a broad spectral range of colors, and we employ finite element modelling to corroborate the measured LSPR fingerprint spectra. Most importantly, the ∼60 cm2 nanostructure arrays can be written in only a few minutes, which is a tremendous improvement compared to the more established techniques employed for fabricating similar structures.

3.
Sci Rep ; 7(1): 17893, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263336

ABSTRACT

Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so here we introduce a method for selection and enrichment of megabase-sized DNA molecules intended for single-molecule optical mapping: DNA from a human cell line is digested by the NotI rare-cutting enzyme and size-selected by pulsed-field gel electrophoresis. For demonstration, more than 600 sub-megabase- to megabase-sized DNA molecules were recovered from the gel and analysed by denaturation-renaturation optical mapping. Size-selected molecules from the same gel were sequenced by NGS. The optically mapped molecules and the NGS reads showed enrichment from regions defined by NotI restriction sites. We demonstrate that the unannotated genome can be characterized in a locus-specific manner via molecules partially overlapping with the annotated genome. The method is a promising tool for investigation of structural variants in enriched human genomic regions for both research and diagnostic purposes. Our enrichment method could potentially work with other genomes or target specified regions by applying other genomic editing tools, such as the CRISPR/Cas9 system.


Subject(s)
DNA/genetics , Chromosome Mapping/methods , Electrophoresis, Gel, Pulsed-Field/methods , Female , Genome, Human/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Restriction Mapping/methods , Sequence Analysis, DNA/methods
4.
Sci Rep ; 6: 35183, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725703

ABSTRACT

We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color.

SELECTION OF CITATIONS
SEARCH DETAIL
...