Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Aquat Anim Health ; 35(1): 20-33, 2023 03.
Article in English | MEDLINE | ID: mdl-36708074

ABSTRACT

OBJECTIVE: Cutaneous ulcerative skin lesions in a complex of invasive Gulf of Mexico lionfish (Red Lionfish Pterois volitans, Devil Firefish P. miles, and the hybrid Red Lionfish × Devil Firefish) became epizootic beginning in mid-August 2017. Herein, we provide the first pathological descriptions of these lesions and summarize our analyses to elucidate the etiology of the disease. METHODS: We examined ulcerated and normal fish through gross pathology and histopathology, bacterial sampling, and unbiased metagenomic next-generation sequencing. We tracked prevalence of the disease, and we used biological health indicators (condition factor, splenosomatic and hepatosomatic index) to evaluate impacts to health, while considering sex and age as potential risk factors. RESULT: Typical ulcerative lesions were deep, exposing skeletal muscle, and were bordered by pale or reddened areas often with some degree of scale loss. Only incidental parasites were found in our examinations. Most fish (86%; n = 50) exhibited wound healing grossly and histologically, confirmed by the presence of granulation tissues. A primary bacterial pathogen was not evident through bacterial culture or histopathology. Metagenomic next-generation sequencing did not reveal a viral pathogen (DNA or RNA) but did provide information about the microbiome of some ulcerated specimens. Compared with clinically healthy fish, ulcerated fish had a significantly lower condition factor and a higher splenosomatic index. Disease prevalence at monitored sites through July 2021 indicated that ulcerated fish were still present but at substantially lower prevalence than observed in 2017. CONCLUSION: Although some common findings in a number of specimens suggest a potential role for opportunistic bacteria, collectively our suite of diagnostics and analyses did not reveal an intralesional infectious agent, and we must consider the possibility that there was no communicable pathogen.


Subject(s)
Perciformes , Animals , Gulf of Mexico , Perciformes/physiology , Fishes
2.
Harmful Algae ; 92: 101771, 2020 02.
Article in English | MEDLINE | ID: mdl-32113602

ABSTRACT

In the summer of 2010, a sustained multispecies fish kill, affecting primarily adult red drum (Sciaenops ocellatus) and Atlantic stingray (Dasyatis sabina), along with various baitfish such as menhaden (Brevoortia spp.) and shad (Dorosoma spp.), was documented for six weeks along 50 km of the Lower St. Johns River (LSJR), Florida. An Aphanizomenon flos-aquae bloom was present in the freshwater reaches before the fish kill. The kill was triggered by a significant reverse-flow event and sudden influx of high-salinity water in late May that contributed to the collapse of the bloom upstream and brought euryhaline fish downstream into the vicinity of the senescing bloom or its by-products. The decomposing bloom led to a sequence of events, including the release of small amounts of cyanotoxins, bacterial lysis of cyanobacterial cells, high organic loading, and changes in the diversity and dominance of the plankton community to include Microcystis spp., Leptolyngbya sp., Pseudanabaena spp., Planktolyngbya spp., and low concentrations of Heterosigma akashiwo. Dissolved oxygen levels were within normal ranges in the reach of the fish kill, although elevated ammonia concentrations and high pH were detected farther upstream. These conditions resulted in complex pathological changes in fish that were not consistent with acute cyanotoxin exposure or with poor water quality but were attributable to chronic lethal hemolysis. Potential sources of hemolytic activity included H. akashiwo, Microcystis spp., and Bacillus cereus, a hemolytic bacterium. The continued presence of A. flos-aquae in the LSJR could have significant environmental repercussions and ideally the causal factors contributing to bloom growth and maintenance should be fully understood and managed.


Subject(s)
Aphanizomenon , Cyanobacteria , Microcystis , Animals , Florida , Rivers
3.
Environ Microbiol ; 20(8): 2686-2708, 2018 08.
Article in English | MEDLINE | ID: mdl-29521452

ABSTRACT

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.


Subject(s)
Chemoautotrophic Growth , Genome, Bacterial , Piscirickettsiaceae/genetics , Ecosystem , Hydrogenase/genetics , Phylogeny , Piscirickettsiaceae/classification , Piscirickettsiaceae/enzymology , Piscirickettsiaceae/metabolism , Sulfur/metabolism
4.
Dis Aquat Organ ; 105(2): 89-99, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23872853

ABSTRACT

A multispecies amphibian larval mortality event, primarily affecting American bullfrogs Lithobates catesbeianus, was investigated during April 2011 at the Mike Roess Gold Head Branch State Park, Clay County, Florida, USA. Freshly dead and moribund tadpoles had hemorrhagic lesions around the vent and on the ventral body surface, with some exhibiting a swollen abdomen. Bullfrogs (100%), southern leopard frogs L. sphenocephalus (33.3%), and gopher frogs L. capito (100%) were infected by alveolate parasites. The intensity of infection in bullfrog livers was high. Tadpoles were evaluated for frog virus 3 (FV3) by histology and PCR. For those southern leopard frog tadpoles (n = 2) whose livers had not been obscured by alveolate spore infection, neither a pathologic response nor intracytoplasmic inclusions typically associated with clinical infections of FV3-like ranavirus were noted. Sequencing of a portion (496 bp) of the viral major capsid protein gene confirmed FV3-like virus in bullfrogs (n = 1, plus n = 6 pooled) and southern leopard frogs (n = 1, plus n = 4 pooled). In July 2011, young-of-the-year bullfrog tadpoles (n = 7) were negative for alveolate parasites, but 1 gopher frog tadpole was positive. To our knowledge, this is the first confirmed mortality event for amphibians in Florida associated with FV3-like virus, but the extent to which the virus played a primary role is uncertain. Larval mortality was most likely caused by a combination of alveolate parasite infections, FV3-like ranavirus, and undetermined etiological factors.


Subject(s)
Alveolata/isolation & purification , DNA Virus Infections/veterinary , Protozoan Infections, Animal/parasitology , Ranavirus/isolation & purification , Ranidae/parasitology , Ranidae/virology , Animals , DNA Virus Infections/epidemiology , DNA Virus Infections/mortality , DNA Virus Infections/virology , Florida/epidemiology , Larva/parasitology , Larva/virology , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/mortality
5.
Vet Microbiol ; 165(3-4): 358-72, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23623688

ABSTRACT

Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G+C content demonstrated 56.4% G+C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.


Subject(s)
Edwardsiella tarda/classification , Edwardsiella tarda/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/microbiology , Genetic Variation , Phylogeny , Animals , Anti-Infective Agents/pharmacology , Base Composition , Edwardsiella tarda/drug effects , Edwardsiella tarda/isolation & purification , Enterobacteriaceae Infections/microbiology , Fishes , Genes, Bacterial/genetics , Microbial Sensitivity Tests , Molecular Sequence Data , Polymerase Chain Reaction , United States
6.
Environ Health Perspect ; 114(7): 1024-31, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16835054

ABSTRACT

Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-alpha gene expression [total polychlorinated biphenyls (capital sigmaPCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (capital sigmaPCBs; r = -0.711; p < 0.001) . Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals.


Subject(s)
Gene Expression Regulation/drug effects , Phoca/genetics , Phoca/physiology , Polychlorinated Biphenyls/pharmacology , Receptors, Thyroid Hormone/genetics , Thyroid Hormones/genetics , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Base Sequence , Biopsy , Pacific Ocean , Polychlorinated Biphenyls/toxicity , Skin/metabolism , Thyroid Hormones/blood , Washington , Water Pollutants, Chemical/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...