Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 366: 110126, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36027949

ABSTRACT

Alzheimer's disease (AD) is characterized by extracellular amyloid plaques composed of amyloid-ß peptide (Aß), intracellular neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. Most of the FDA-approved AD drugs currently on the market are cholinesterase inhibitors, which are only effective in relieving the symptoms of AD. However, recent studies in AD drug discovery focus on multi-targeted strategies, including anti-amyloid and anti-tau therapy. In the current study, we have investigated the effects of toluidine blue O (TBO), a cholinesterase inhibitor, on amyloid precursor protein (APP) processing, tau phosphorylation, and tau kinases/phosphatase in N2a mouse neuroblastoma cells stably expressing the Swedish mutation of human APP695 (N2a-APPSwe). The results demonstrated that TBO reduces Aß40/42 levels by decreasing expression levels of ß-secretase 1 (BACE1), presenilin 1 (PS1) and total APP without causing cytotoxic effects in N2a-APPSwe cells. TBO also decreased the levels of both total tau and phosphorylated tau at residues Ser202/Thr205, Thr181, Ser396 and Ser 396/Ser404. Moreover, when the possible mechanisms underlying its effects on tau pathology were explored, TBO was found to decrease tau phosphorylation at those sites by reducing the expression levels of Akt, GSK-3ß, Cdk5, inactive p-PP2A and increasing the expression levels of p-Akt Ser473 and inactive p-GSK-3ß Ser9. Our new data support the idea that TBO may be a promising multi-target drug candidate for the treatment of AD.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Cholinesterase Inhibitors/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Mice, Transgenic , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Presenilin-1/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tolonium Chloride/pharmacology , Tolonium Chloride/therapeutic use , tau Proteins/metabolism
2.
Chem Biol Interact ; 363: 110029, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35779611

ABSTRACT

Epidemiological evidence suggests that people chronically exposed to organophosphorus pesticides are at increased risk of neurodegenerative disease. Covalently linked amyloid beta dimers have been isolated from the brains of Alzheimer's patients. The toxic forms of amyloid beta are amyloid dimers that spontaneously oligomerize. In the present report we treated recombinant and synthetic amyloid beta (1-42) with 1 mM chlorpyrifos oxon or 1 mM paraoxon. The trypsin-digested samples were analyzed by liquid chromatography tandem mass spectrometry on an Orbitrap Fusion Lumos mass spectrometer. Data were searched with Protein Prospector software. We found two new types of crosslinks in amyloid dimers. An isopeptide Asp-Asp link occurred between the N-terminal amine of Asp 1 in one peptide and the beta carboxyl group of Asp 1 in another peptide. An Asp-Arg link occurred between the guanidino group of Arg 5 in one peptide and the beta carboxyl group of Asp 1 in another peptide. These results show that the active metabolites of the pesticides chlorpyrifos and parathion catalyze the crosslinking of amyloid beta (1-42) into toxic dimers. It was concluded that the increased risk of neurodegenerative disease in people exposed to organophosphorus pesticides could be explained by the crosslinking activity of these chemicals. Data are available via ProteomeXchange with identifier PXD034163.


Subject(s)
Alzheimer Disease , Chlorpyrifos , Neurodegenerative Diseases , Pesticides , Alzheimer Disease/chemically induced , Amyloid beta-Peptides , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/metabolism , Humans , Organophosphorus Compounds/metabolism , Peptide Fragments , Pesticides/toxicity
3.
Neurotoxicology ; 90: 1-9, 2022 05.
Article in English | MEDLINE | ID: mdl-35189179

ABSTRACT

Cultured SH-SY5Y human neuroblastoma cells are used in neurotoxicity assays. These cells express markers of the cholinergic and dopaminergic systems. Acetylcholinesterase (AChE) activity has been reported in these cells. Neurotoxic organophosphate compounds that inhibit AChE, also inhibit butyrylcholinesterase (BChE). We confirmed the presence of AChE in the cell lysate by activity assays, Western blot, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of immunopurified AChE. A nondenaturing gel stained for AChE activity identified the catalytically active AChE in SH-SY5Y cells as the unstable monomer. We also identified immature BChE in the cell lysate. The concentration of active BChE protein was similar to that of active AChE protein. The rate of substrate hydrolysis by AChE was 10-fold higher than substrate hydrolysis by BChE. The higher rate was due to the 10-fold higher specific activity of AChE over BChE (5000 units/mg for AChE; 500 units/mg for BChE). Neither cholinesterase was secreted. Tryptic peptides of immunopurified AChE and BChE were identified by LC-MS/MS on an Orbitrap Lumos Fusion mass spectrometer. The unfolded protein chaperone, binding immunoglobulin protein BiP/GRP78, was identified in the mass spectral data from all cholinesterase samples, suggesting that BiP was co-extracted with cholinesterase. This suggests that the cytoplasmic cholinesterases are immature forms of AChE and BChE that bind to BiP. It was concluded that SH-SY5Y cells express active AChE and active BChE, but the proteins do not mature to glycosylated tetramers.


Subject(s)
Neuroblastoma , Neurotoxicity Syndromes , Acetylcholinesterase/metabolism , Butyrylcholinesterase , Cholinesterase Inhibitors/toxicity , Chromatography, Liquid , Humans , Tandem Mass Spectrometry
4.
Drug Dev Res ; 83(4): 900-909, 2022 06.
Article in English | MEDLINE | ID: mdl-35092039

ABSTRACT

Amyloid precursor-like protein-2 (APLP2) and its C-terminal fragments (CTFs) are expressed at high levels in pancreatic cancer cells and knockdown of APLP2 expression inhibits tumor growth. CTFs are released from APLP2 by beta-secretase (BACE). In this study, our goal was to determine whether methylene blue (MethB) and toluidine blue O (TBO) could be used to slow down the growth and viability of pancreatic cancer cells (Hs 766T). We found that TBO and MethB decreased the growth and viability of Hs 766T cells in a dose- and time-dependent manner compared to vehicle-treated control, as demonstrated by MTT and trypan blue exclusion assays. Although TBO led to decreased expression of APLP2, MethB did not show any significant effect on APLP2. However, both MethB and TBO reduced BACE activity and the levels of APLP2 CTFs in Hs 766T cells. In conclusion, MethB and TBO may be valuable candidates for the treatment of pancreatic cancer by targeting APLP2 processing.


Subject(s)
Pancreatic Neoplasms , Tolonium Chloride , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor/metabolism , Humans , Methylene Blue/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Tolonium Chloride/pharmacology , Pancreatic Neoplasms
5.
J Proteome Res ; 20(10): 4728-4745, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34469172

ABSTRACT

Chronic low-dose exposure to organophosphorus pesticides is associated with the risk of neurodegenerative disease. The mechanism of neurotoxicity is independent of acetylcholinesterase inhibition. Adducts on tyrosine, lysine, threonine, and serine can occur after exposure to organophosphorus pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal 1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10-8 M) were determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma N2a cells incubated with a subcytotoxic dose of 10 µM chlorpyrifos oxon contained depY-modified proteins detected by monoclonal 1C6 on Western blots. depY-labeled peptides from tryptic digests of cell lysates were immunopurified by binding to immobilized 1C6. Peptides released with 50% acetonitrile and 1% formic acid were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Lumos mass spectrometer. Protein Prospector database searches identified 51 peptides modified on tyrosine by diethoxyphosphate in SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in N2a cell lysate. Adducts appeared most frequently on the cytoskeleton proteins tubulin, actin, and vimentin. It was concluded that rabbit monoclonal 1C6 can be useful for studies that aim to understand the mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus pesticides.


Subject(s)
Neurodegenerative Diseases , Pesticides , Acetylcholinesterase , Animals , B-Lymphocytes , Cells, Cultured , Chlorpyrifos/analogs & derivatives , Chromatography, Liquid , Cloning, Molecular , Mice , Organophosphorus Compounds , Peptides , Pesticides/toxicity , Tandem Mass Spectrometry
6.
Arch Biochem Biophys ; 698: 108728, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33345803

ABSTRACT

In the present study, the inhibitory mechanisms and effects of a synthetic phenazine dye, safranin O (SO) on human plasma butyrylcholinesterase (BChE), human erythrocyte acetylcholinesterase (AChE) and recombinant BChE mutants were investigated. Kinetic studies showed the following information: SO leaded to linear competitive inhibition of human plasma BChE with Ki = 0.44 ± 0.085 µM; α = ∞. It acted as a hyperbolic noncompetitive inhibitor of human erythrocyte AChE with Ki = 0.69 ± 0.13; α = 1; ß = 0.08 ± 0.02. On the other hand, the inhibitory effects of SO on two BChE mutants, where A328 was modified to either F or Y, revealed differences in terms of inhibitory patterns and Ki values, compared to the obtained results with recombinant wild type BChE. SO was found to act as a linear competitive inhibitor of A328F and A328Y BChE mutants. Compared to recombinant wild type BChE, A328Y and A328F BChE mutants caused a 4- and 10-fold decrease in Ki value for SO, respectively. These findings were supported by molecular modelling studies. In conclusion, SO is a potent inhibitor of human cholinesterases and may be useful in the design and development of new drugs for the treatment of AD.


Subject(s)
Cholinesterase Inhibitors/chemistry , Phenazines/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/genetics , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/metabolism , Erythrocytes/enzymology , Humans , Kinetics , Ligands , Molecular Docking Simulation , Mutation , Phenazines/metabolism , Protein Binding
7.
Anal Biochem ; 600: 113718, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32335065

ABSTRACT

Glutamine residues susceptible to transglutaminase-catalyzed crosslinking can be identified by incorporation of dansyl cadaverine or biotin cadaverine. Bacterial transglutaminase and human transglutaminase 2 were used to modify residues in beta-casein with dansyl cadaverine. Bacterial transglutaminase was used to modify residues in human butyrylcholinesterase with biotin cadaverine. Tryptic peptides were analyzed by LC-MS/MS on an Orbitrap Fusion Lumos mass spectrometer. Modified residues were identified in Protein Prospector searches of mass spectrometry data. The MS/MS spectra from modified casein included intense peaks at 336.2, 402.2, and 447.2 for fragments of dansyl cadaverine adducts on glutamine. The MS/MS spectra from modified butyrylcholinesterase included intense peaks at 329.2, 395.2, and 440.2 for fragments of biotin cadaverine adducts on glutamine. No evidence for transglutaminase-catalyzed adducts on glutamic acid, aspartic acid, or asparagine was found. Consistent with expectation, it was concluded that bacterial transglutaminase and human transglutaminase 2 specifically modify glutamine. The characteristic ions associated with dansyl cadaverine and biotin cadaverine adducts on glutamine are useful markers for modified peptides.


Subject(s)
Biotin/chemistry , Cadaverine/chemistry , Glutamine/chemistry , Biotin/metabolism , Butyrylcholinesterase/metabolism , Cadaverine/metabolism , Glutamine/metabolism , Humans , Ions/chemistry , Ions/metabolism , Streptomyces/enzymology , Transglutaminases/metabolism
8.
Molecules ; 25(3)2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31991818

ABSTRACT

A newly recognized action of organophosphates (OP) is the ability to crosslink proteins through an isopeptide bond. The first step in the mechanism is covalent addition of the OP to the side chain of lysine. This activates OP-lysine for reaction with a nearby glutamic or aspartic acid to make a gamma glutamyl epsilon lysine bond. Crosslinked proteins are high molecular weight aggregates. Our goal was to identify the residues in the human butyrylcholinesterase (HuBChE) tetramer that were crosslinked following treatment with 1.5 mM chlorpyrifos oxon. High molecular weight bands were visualized on an SDS gel. Proteins in the gel bands were digested with trypsin, separated by liquid chromatography and analyzed in an Orbitrap mass spectrometer. MSMS files were searched for crosslinked peptides using the Batch-Tag program in Protein Prospector. MSMS spectra were manually evaluated for the presence of ions that supported the crosslinks. The crosslink between Lys544 in VLEMTGNIDEAEWEWK544AGFHR and Glu542 in VLEMTGNIDEAEWE542WK satisfied our criteria including that of spatial proximity. Distances between Lys544 and Glu542 were 7.4 and 9.5 Å, calculated from the cryo-EM (electron microscopy) structure of the HuBChE tetramer. Paraoxon ethyl, diazoxon, and dichlorvos had less pronounced effects as visualized on SDS gels. Our proof-of-principle study provides evidence that OP have the ability to crosslink proteins. If OP-induced protein crosslinking occurs in the brain, OP exposure could be responsible for some cases of neurodegenerative disease.


Subject(s)
Butyrylcholinesterase/chemistry , Chlorpyrifos/analogs & derivatives , Peptides/chemistry , Binding Sites , Butyrylcholinesterase/metabolism , Catalysis , Chlorpyrifos/chemistry , Chlorpyrifos/metabolism , Humans , Isomerism , Models, Molecular , Molecular Conformation , Protein Aggregates , Protein Binding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
Chem Biol Interact ; 314: 108845, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31593690

ABSTRACT

Phenazines, naturally produced by bacteria and archaeal Methanosarcina species are nitrogen-containing tricyclic molecules with antibiotic, antitumoral, and antiparasitic activities. Phenazines are used as electron acceptors-donors in wide range of fields including environmental biosensors. In this study, the inhibitory effects of a synthetic phenazine dye, methylene violet 3RAX (also known as diethyl safranine) on human erythrocyte AChE and human plasma BChE were tested and also its inhibitory mechanisms for both enzymes were studied in detail. Kinetic analyses showed that methylene violet 3RAX acts as a hyperbolic noncompetitive inhibitor of AChE with Ki value of 1.58 ±â€¯0.36 µM; α = 1; ß = 0.12 ±â€¯0.0003. On the other hand, it caused linear competitive inhibition of BChE with Ki value of 0.51 ±â€¯0.006 µM; α = ∞. In conclusion, methylene violet 3RAX which is a highly effective inhibitor of both human AChE and human BChE with Ki values in low micromolar range may be a promising candidate for the treatment of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Phenothiazines/chemistry , Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/metabolism , Humans , Kinetics , Phenothiazines/metabolism
10.
Eur J Pharmacol ; 856: 172415, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31132354

ABSTRACT

Alzheimer's disease (AD), which is predicted to affect 1 in 85 persons worldwide by 2050, results in progressive loss of neuronal functions, leading to impairments in memory and cognitive abilities. As being one of the major neuropathological hallmarks of AD, senile plaques mainly consist of amyloid-ß (Aß) peptides, which are derived from amyloid precursor protein (APP) via the sequential cleavage by ß- and γ-secretases. Although the overproduction and accumulation of Aß peptides are at the center of AD research, the new discoveries point out to the complexity of the disease development. In this respect, it is crucial to understand the processing and the trafficking of APP, the enzymes involved in its processing, the cleavage products and their therapeutic potentials. This review summarizes the salient features of APP processing focusing on APP, the canonical secretases as well as the novel secretases and the cleavage products with an update of the recent developments. We also discussed the intracellular trafficking of APP and secretases in addition to their potential in AD therapy.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Proteolysis , Alzheimer Disease/drug therapy , Amino Acid Sequence , Amyloid beta-Protein Precursor/chemistry , Animals , Humans , Molecular Targeted Therapy , Protein Transport
11.
Chem Biol Interact ; 299: 88-93, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30500345

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, is characterized by abundant deposition of amyloid-ß (Aß) peptide that is the result of sequential cleavage of amyloid precursor protein (APP) by ß-secretase and γ-secretase. Several studies have documented that inhibition of Aß peptide synthesis or facilitating its degradation is one of the attractive therapeutic strategies in AD. Methylene blue (MethB), which has recently been investigated in Phase II clinical trials, is a prominent inhibitor in reducing Aß oligomers. Herein, we wonder whether the mitigating effects of MethB on amyloid metabolism are related to the activity of its major metabolite, azure B. The goal of this study was to investigate the effects of azure B, which is also a cholinesterase inhibitor, on APP processing by using Chinese hamster ovary cells stably expressing human wild-type APP and presenilin 1 (PS70). Azure B significantly decreased the levels of secreted APPα (sAPPα) and Aß40/42 in culture medium with a dose-dependent manner. A significant decrease was also observed in the levels of intracellular APP without affecting the cell viability. In parallel with the decrease of APP and APP metabolites, the activity of ß-secretase 1 (BACE1) was significantly attenuated compared to control. Overall, our results show that azure B has a large contribution for the pharmacological profile of MethB in APP metabolism.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Azure Stains/pharmacology , Down-Regulation/drug effects , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/analysis , Animals , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Humans , Peptide Fragments/analysis , Peptide Fragments/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Up-Regulation/drug effects
12.
Chem Res Toxicol ; 31(6): 520-530, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29775289

ABSTRACT

Chronic illness from exposure to organophosphorus toxicants is hypothesized to involve modification of unknown proteins. Tyrosine in proteins that have no active site serine readily reacts with organophosphorus toxicants. We developed a monoclonal antibody, depY, that specifically recognizes diethoxyphospho-tyrosine in proteins and peptides, independent of the surrounding amino acid sequence. Our goal in the current study was to identify diethoxyphosphorylated proteins in human HEK293 cell lysate treated with chlorpyrifos oxon. Cell lysates treated with chlorpyrifos oxon were recognized by depY antibody in ELISA and capillary electrophoresis based Western blot. Tryptic peptides were analyzed by liquid chromatography tandem mass spectrometry. Liquid chromatography tandem mass spectrometry identified 116 diethoxyphospho-tyrosine peptides from 73 proteins in immunopurified samples, but found only 15 diethoxyphospho-tyrosine peptides from 12 proteins when the same sample was not immunopurified on depY. The most abundant proteins in the cell lysate, histone H4, heat shock 70 kDa protein 1A/1B, heat shock protein HSP 90 ß, and α-enolase, were represented by several diethoxyphospho-tyrosine peptides. It was concluded that use of immobilized depY improved the number of diethoxyphospho-tyrosine peptides identified in a complex mixture. The mass spectrometry results confirmed the specificity of depY for diethoxyphospho-tyrosine peptides independent of the context of the modified tyrosine, which means depY could be used to analyze modified proteins in any species. Use of the depY antibody could lead to an understanding of chronic illness from organophosphorus pesticide exposure.


Subject(s)
Antibodies, Monoclonal/immunology , Chlorpyrifos/analogs & derivatives , Proteins/analysis , Tyrosine/analogs & derivatives , Tyrosine/immunology , Amino Acid Sequence , Animals , Blotting, Western , Chlorpyrifos/chemistry , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Mice , Molecular Structure , Peptides/analysis , Peptides/chemistry , Peptides/immunology , Proteins/chemistry , Proteins/immunology , Proteolysis , Tandem Mass Spectrometry , Tyrosine/chemistry
13.
Front Pharmacol ; 9: 117, 2018.
Article in English | MEDLINE | ID: mdl-29497381

ABSTRACT

Human butyrylcholinesterase (BChE) is purified in large quantities from Cohn fraction IV-4 to use for protection against the toxicity of chemical warfare agents. Small scale preliminary experiments use outdated plasma from the American Red Cross as the starting material for purifying BChE (P06276). Many of the volunteer donor plasma samples are turbid with fat, the donor having eaten fatty food before the blood draw. The turbid fat interferes with enzyme assays performed in the spectrophotometer and with column chromatography. Our goal was to find a method to remove fat from plasma without loss of BChE activity. Satisfactory delipidation was achieved by adding a solution of 10% dextran sulfate and calcium chloride to fatty plasma, followed by centrifugation, and filtration through a 0.8 µm filter. Treatment with Aerosil also delipidated fatty plasma, but was accompanied by loss of 50% of the plasma volume. BChE activity and the BChE isozyme pattern on nondenaturing gel electrophoresis were unaffected by delipidation. BChE in delipidated plasma was efficiently captured by immobilized monoclonal antibodies B2 18-5 and mAb2. The immunopurified BChE was released from antibody binding with acid and visualized as a highly enriched, denatured BChE preparation by SDS gel electrophoresis. In conclusion, delipidation with dextran sulfate/CaCl2 preserves BChE activity and the tetramer structure of BChE.

14.
Anal Chem ; 90(1): 974-979, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29172437

ABSTRACT

Toxicity from acute exposure to nerve agents and organophosphorus toxicants is due to irreversible inhibition of acetylcholinesterase (AChE) in the nervous system. AChE in red blood cells is a surrogate for AChE in the nervous system. Previously we developed an immunopurification method to enrich red blood cell AChE (RBC AChE) as a biomarker of exposure. The goal of the present work was to provide an alternative RBC AChE enrichment strategy, by binding RBC AChE to Hupresin affinity gel. AChE was solubilized from frozen RBC by addition of 1% Triton X-100. Insoluble debris was removed by centrifugation. The red, but not viscous, RBC AChE solution was loaded on a Hupresin affinity column. Hemoglobin and other proteins were washed off with 3 M NaCl, while retaining AChE bound to Hupresin. Denatured AChE was eluted with 1% trifluoroacetic acid. The same protocol was used for 20 mL of RBC AChE inhibited with a soman model compound. The acid denatured protein was digested with pepsin and analyzed by liquid chromatography tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. A targeted method identified the aged soman adduct on serine 203 in peptide FGESAGAAS. It was concluded that Hupresin can be used to enrich soman-inhibited AChE solubilized from 8 mL of frozen human erythrocytes, yielding a quantity sufficient for detecting soman exposure.


Subject(s)
Acetylcholinesterase/analysis , Chromatography, Affinity/methods , Nerve Agents/analysis , Soman/analysis , Acetylcholinesterase/chemistry , Chromatography, Affinity/instrumentation , Enzyme Assays , Erythrocytes/enzymology , Humans , Nerve Agents/chemistry , Soman/chemistry
15.
Biochimie ; 146: 105-112, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29248542

ABSTRACT

Recently, we have demonstrated that toluidine blue O (TBO), a phenothiazine dye, shows inhibitory effects on both cholinesterases and amyloid pathology in Alzheimer's disease (AD) cellular model. In the present study, we aimed to determine the effects of TBO (in a purity of 85%) on amyloid and tau pathologies in a triple transgenic mouse model of AD (3xTg-AD). Beginning at 7.5 (mild pathology) or 13 (severe pathology) months of age, 3xTg-AD mice were treated intraperitoneally with 4 mg/kg TBO or vehicle daily for 30 days. TBO treatment significantly reduced the levels of insoluble Aß40 and Aß42 in the hippocampi of mild and severe pathology groups compared to vehicle-treated counterparts. When the levels of full-length amyloid precursor protein (APP) and ß-site APP-cleaving enzyme 1 (BACE1) were assessed in 3xTg-AD mice at late pathological stage, no significant changes were observed after TBO treatment. Similarly, TBO did not recover hyperphosphorylation of tau at residues Thr181 and Ser202/Thr205 significantly in soluble and insoluble hippocampal fractions of 3xTg-AD mice. Taken together, the current study is the first in vivo report, to our knowledge, demonstrating that TBO mitigates amyloid pathology in 3xTg-AD mice with no apparent change on tau phosphorylation. Overall, the preliminary data presented here support the possible use of TBO as a disease-modifying drug for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Tolonium Chloride/pharmacology , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Hippocampus/pathology , Male , Mice , Mice, Transgenic , Phosphorylation/drug effects , Protein Aggregates/drug effects , Tolonium Chloride/therapeutic use , tau Proteins/metabolism
16.
Chem Res Toxicol ; 30(12): 2218-2228, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29137457

ABSTRACT

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are irreversibly inhibited by organophosphorus pesticides through formation of a covalent bond with the active site serine. Proteins that have no active site serine, for example albumin, are covalently modified on tyrosine and lysine. Chronic illness from pesticide exposure is not explained by inhibition of AChE and BChE. Our goal was to produce a monoclonal antibody that recognizes proteins diethoxyphosphorylated on tyrosine. Diethoxyphosphate-tyrosine adducts for 13 peptides were synthesized. The diethoxyphosphorylated (OP) peptides cross-linked to four different carrier proteins were used to immunize, boost, and screen mice. Monoclonal antibodies were produced with hybridoma technology. Monoclonal antibody depY was purified and characterized by ELISA, western blotting, Biacore, and Octet technology to determine binding affinity and binding specificity. DepY recognized diethoxyphosphotyrosine independent of the amino acid sequence around the modified tyrosine and independent of the identity of the carrier protein or peptide. It had an IC50 of 3 × 10-9 M in a competition assay with OP tubulin. Kd values measured by Biacore and OctetRED96 were 10-8 M for OP-peptides and 1 × 10-12 M for OP-proteins. The limit of detection measured on western blots hybridized with 0.14 µg/mL of depY was 0.025 µg of human albumin conjugated to YGGFL-OP. DepY was specific for diethoxyphosphotyrosine (chlorpyrifos oxon adduct) as it failed to recognize diethoxyphospholysine, phosphoserine, phosphotyrosine, phosphothreonine, dimethoxyphosphotyrosine (dichlorvos adduct), dimethoxyphosphoserine, monomethoxyphosphotyrosine (aged dichlorvos adduct), and cresylphosphoserine. In conclusion, a monoclonal antibody that specifically recognizes diethoxyphosphotyrosine adducts has been developed. The depY monoclonal antibody could be useful for identifying new biomarkers of OP exposure.


Subject(s)
Amino Acids/chemistry , Antibodies, Monoclonal/immunology , Peptides/chemistry , Peptides/immunology , Phosphotyrosine/analogs & derivatives , Phosphotyrosine/immunology , Amino Acids/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Carrier Proteins/chemistry , Carrier Proteins/immunology , Humans , Mice , Molecular Structure , Phosphotyrosine/chemistry
17.
Front Pharmacol ; 8: 713, 2017.
Article in English | MEDLINE | ID: mdl-29066970

ABSTRACT

Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

18.
Biochimie ; 138: 82-89, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28457944

ABSTRACT

The excess accumulation of amyloid-ß (Aß) peptides derived from the sequential cleavage of amyloid precursor protein (APP) by secretases, is one of the toxic key events leading to neuronal loss in Alzheimer's disease (AD). Studies have shown that cholinergic activity may also be involved in the regulation of APP metabolism. In the current study, we have investigated the roles of toluidine blue O (TBO) and thionine (TH), newly recognized phenothiazine-derived cholinesterase inhibitors, on the metabolism of APP in Chinese hamster ovary cells stably expressing human APP751 and presenilin 1 (PS70 cells). We assessed the effects of both compounds on the levels of Aß, soluble APP-α (sAPPα), intracellular APP and ß-site APP-cleaving enzyme 1 (BACE1). After treatment of PS70 cells with TBO or TH without any side effect on cell viability, the levels of secreted Aß40, Aß42 and sAPPα were assayed by specific sandwich ELISAs while APP and BACE1 in cell lysates were analyzed using Western blot. The secreted Aß40, Aß42 and sAPPα in TBO- and TH-treated cells were found to be reduced in a dose-dependent manner compared to vehicle-treated cells. Results suggest that TH mitigated the Aß pathology by lowering APP levels whereas reduced Aß caused by TBO treatment seems to be the outcome of both less substrate availability and amyloidogenic APP processing. Taken together, our results represent the first report demonstrating that TBO and TH can affect amyloid metabolism in vitro.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/drug effects , Amyloid beta-Protein Precursor/drug effects , Aspartic Acid Endopeptidases/drug effects , Phenothiazines/pharmacology , Tolonium Chloride/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , CHO Cells , Cholinesterase Inhibitors/pharmacology , Cricetulus
19.
Arch Biochem Biophys ; 604: 57-62, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27296777

ABSTRACT

In this study, the inhibitory effects of three phenothiazines [toluidine blue O (TBO), thionine (TH) and methylene violet (MV)] were tested on human plasma butyrylcholinesterase (BChE) and their inhibitory mechanisms were studied in detail. MV acted as a linear mixed type inhibitor of human BChE with Ki = 0.66 ± 0.06 µM and α = 13.6 ± 3.5. TBO and TH caused nonlinear inhibition of human BChE, compatible to double occupancy. Ki values estimated by nonlinear regression analysis for TBO and TH were 0.008 ± 0.003 µM and 2.1 ± 0.42 µM, respectively. The inhibitory potential of TBO was also tested on human erythrocyte AChE. TBO acted as a linear mixed type inhibitor of human AChE with Ki = 0.041 ± 0.005 µM and α = 1.6 ± 0.007. Using four site-directed BChE mutants, the role of peripheral anionic site residues of human BChE was also investigated in the binding of TBO to BChE. The peripheral anionic site mutants of BChE caused 16-69-fold increase in Ki value of TBO, compared to recombinant wild-type, suggesting that peripheral anionic site residues are involved in the binding of TBO to human BChE. In conclusion, TBO which is a potent inhibitor of human cholinesterases, may be a potential drug candidate for the treatment of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Phenothiazines/chemistry , Tolonium Chloride/chemistry , Alzheimer Disease/drug therapy , Anions , Binding Sites , Dose-Response Relationship, Drug , Erythrocytes/enzymology , Humans , Kinetics , Mutagenesis, Site-Directed , Mutation , Neuroprotective Agents/chemistry , Protein Binding , Regression Analysis
20.
Chem Biol Interact ; 215: 69-74, 2014 May 25.
Article in English | MEDLINE | ID: mdl-24661946

ABSTRACT

About 18% of fighter pilots complain of ill symptoms that begin during flight and persist for days. A possible source of toxicity is the air supplied through the on board oxygen generating system. The air passes through the jet engine before it is enriched for oxygen and breathed through an oxygen mask. While in the jet engine, the air can become contaminated with jet engine lubricating oil. A potentially toxic component in jet engine oil is tri-ortho-cresyl phosphate (TOCP), which is metabolically activated to the highly reactive cresyl saligenin phosphate. The cresyl saligenin phosphate reacts with butyrylcholinesterase (BChE) to make a covalent adduct on serine 198. The purpose of this work was to determine whether the blood of healthy, active-duty F-16 pilots has measurable levels of the cresyl phosphate adduct. BChE was immunopurified from 0.5ml plasma by binding to immobilized monoclonal mAb2. BChE protein was released with acetic acid, digested with pepsin and analyzed by LC-MS/MS on the 5600 Triple TOF mass spectrometer. Positive controls for quantifying the limit of detection were plasma samples containing known amounts of cresyl saligenin phosphate treated plasma. The cresyl phosphate adduct eluted at 31.3min with an observed parent ion mass of 966.4m/z and characteristic daughter ions 778.3, 673.3, and 602.3m/z. Control experiments demonstrated that as little as 0.1% of the 1-2µg BChE recovered from 0.5ml plasma could be detected as the cresyl phosphate adduct on peptide FGES198AGAAS. Mass spectrometry analysis of plasma from fifteen healthy F-16 pilots showed that none had evidence of exposure to TOCP. It was concluded that the on-board oxygen generating system, when operating properly, did not deliver tri-ortho-cresyl phosphate in the oxygen supply.


Subject(s)
Aircraft , Health , Occupational Exposure/analysis , Oxygen/chemistry , Tritolyl Phosphates/chemistry , Tritolyl Phosphates/toxicity , Air Pollutants/chemistry , Air Pollutants/toxicity , Butyrylcholinesterase/blood , Butyrylcholinesterase/metabolism , Humans , Isomerism , Respiratory Protective Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...