Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1336520, 2024.
Article in English | MEDLINE | ID: mdl-39011154

ABSTRACT

People with unilateral transtibial amputation (TTA) using a passive-elastic prosthesis exhibit lower positive affected leg trailing work (ALtrail Wpos) and a greater magnitude of negative unaffected leg leading work (ULlead Wneg) during walking than non-amputees, which may increase joint pain and osteoarthritis risk in the unaffected leg. People with TTA using a stance-phase powered prosthesis (e.g., BiOM, Ottobock, Duderstadt, Germany) walk with increased ALtrail Wpos and potentially decreased magnitude of ULlead Wneg compared to a passive-elastic prosthesis. The BiOM includes a passive-elastic prosthesis with a manufacturer-recommended stiffness category and can be tuned to different power settings, which may change ALtrail Wpos, ULlead Wneg, and the prosthesis effective foot length ratio (EFLR). Thirteen people with TTA walked using 16 different prosthetic stiffness category and power settings on a level treadmill at 0.75-1.75 m/s. We constructed linear mixed effects models to determine the effects of stiffness category and power settings on ALtrail Wpos, ULlead Wneg, and EFLR and hypothesized that decreased stiffness and increased power would increase ALtrail Wpos, not change and decrease ULlead Wneg magnitude, and decrease and not change prosthesis EFLR, respectively. We found there was no significant effect of stiffness category on ALtrail Wpos but increased stiffness reduced ULlead Wneg magnitude, perhaps due to a 0.02 increase in prosthesis EFLR compared to the least stiff category. Furthermore, we found that use of the BiOM with 10% and 20% greater than recommended power increased ALtrail Wpos and decreased ULlead Wneg magnitude at 0.75-1.00 m/s. However, prosthetic power setting depended on walking speed so that use of the BiOM increased ULlead Wneg magnitude at 1.50-1.75 m/s compared to a passive-elastic prosthesis. Ultimately, our results suggest that at 0.75-1.00 m/s, prosthetists should utilize the BiOM attached to a passive-elastic prosthesis with an increased stiffness category and power settings up to 20% greater than recommended based on biological ankle values. This prosthetic configuration can allow people with unilateral transtibial amputation to increase ALtrail Wpos and minimize ULlead Wneg magnitude, which could reduce joint pain and osteoarthritis risk in the unaffected leg and potentially lower the metabolic cost of walking.

2.
Front Rehabil Sci ; 5: 1290092, 2024.
Article in English | MEDLINE | ID: mdl-38481976

ABSTRACT

Introduction: Passive-elastic prosthetic feet are manufactured with numerical stiffness categories and prescribed based on the user's body mass and activity level, but mechanical properties, such as stiffness values and hysteresis are not typically reported. Since the mechanical properties of passive-elastic prosthetic feet and footwear can affect walking biomechanics of people with transtibial or transfemoral amputation, characterizing these properties can provide objective metrics for comparison and aid prosthetic foot prescription and design. Methods: We characterized axial and torsional stiffness values, and hysteresis of 33 categories and sizes of a commercially available passive-elastic prosthetic foot model [Össur low-profile (LP) Vari-flex] with and without a shoe. We assumed a greater numerical stiffness category would result in greater axial and torsional stiffness values but would not affect hysteresis. We hypothesized that a greater prosthetic foot length would not affect axial stiffness values or hysteresis but would result in greater torsional stiffness values. We also hypothesized that including a shoe would result in decreased axial and torsional stiffness values and greater hysteresis. Results: Prosthetic stiffness was better described by curvilinear than linear equations such that stiffness values increased with greater loads. In general, a greater numerical stiffness category resulted in increased heel, midfoot, and forefoot axial stiffness values, increased plantarflexion and dorsiflexion torsional stiffness values, and decreased heel, midfoot, and forefoot hysteresis. Moreover, for a given category, a longer prosthetic foot size resulted in decreased heel, midfoot, and forefoot axial stiffness values, increased plantarflexion and dorsiflexion torsional stiffness values, and decreased heel and midfoot hysteresis. In addition, adding a shoe to the prosthetic foot resulted in decreased heel and midfoot axial stiffness values, decreased plantarflexion torsional stiffness values, and increased heel, midfoot, and forefoot hysteresis. Discussion: Our results suggest that manufacturers should adjust the design of each category to ensure the mechanical properties are consistent across different sizes and highlight the need for prosthetists and researchers to consider the effects of shoes in combination with prostheses. Our results can be used to objectively compare the LP Vari-flex prosthetic foot to other prosthetic feet to inform their prescription, design, and use for people with a transtibial or transfemoral amputation.

4.
Sci Rep ; 13(1): 7679, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169823

ABSTRACT

We aimed to determine a method for prescribing a standing prosthetic leg length (ProsL) that results in an equivalent running biological leg length (BioL) for athletes with unilateral (UTTA) and bilateral transtibial amputations (BTTA). We measured standing leg length of ten non-amputee (NA) athletes, ten athletes with UTTA, and five athletes with BTTA. All athletes performed treadmill running trials from 3 m/s to their maximum speed. We calculated standing and running BioL and ProsL lengths and assessed the running-to-standing leg length ratio (Lratio) at three instances during ground contact: touchdown, mid-stance, and take-off. Athletes with UTTA had 2.4 cm longer standing ProsL than BioL length (p = 0.030), but their ProsL length were up to 3.3 cm shorter at touchdown and 4.1 cm shorter at mid-stance than BioL, at speed 3-11.5 m/s. At touchdown, mid-stance, and take-off, athletes with BTTA had 0.01-0.05 lower Lratio at 3 m/s (p < 0.001) and 0.03-0.07 lower Lratio at 10 m/s (p < 0.001) in their ProsL compared to the BioL of NA athletes. During running, ProsL were consistently shorter than BioL. To achieve equivalent running leg lengths at touchdown and take-off, athletes with UTTA should set their running-specific prosthesis height so that their standing ProsL length is 2.8-4.5% longer than their BioL length, and athletes with BTTA should set their running-specific prosthesis height so that their standing ProsL lengths are at least 2.1-3.9% longer than their presumed BioL length. Setting ProsL length to match presumed biological dimensions during standing results in shorter legs during running.


Subject(s)
Amputees , Artificial Limbs , Humans , Leg , Biomechanical Phenomena , Amputation, Surgical
5.
R Soc Open Sci ; 9(6): 211691, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706678

ABSTRACT

Athletes with transtibial amputation (TTA) use running-specific prostheses (RSPs) to run. RSP configuration likely affects the biomechanics of such athletes across speeds. We determined how the use of three RSP models (Catapult, Sprinter and Xtend) with three stiffness categories (recommended, ±1), and three heights (recommended, ±2 cm) affected contact length (Lc ), stance average vertical ground reaction force (F avg), step frequency (f step) and asymmetry between legs for 10 athletes with unilateral TTA at 3-7 m s-1. The use of the Xtend versus Catapult RSP decreased Lc (p = 2.69 × 10-7) and F avg asymmetry (p = 0.032); the effect on Lc asymmetry diminished with faster speeds (p = 0.0020). The use of the Sprinter versus Catapult RSP decreased F avg asymmetry (p = 7.00 × 10-5); this effect was independent of speed (p = 0.90). The use of a stiffer RSP decreased Lc asymmetry (p ≤ 0.00033); this effect was independent of speed (p ≥ 0.071). The use of a shorter RSP decreased Lc (p = 5.86 × 10-6), F avg (p = 8.58 × 10-6) and f step asymmetry (p = 0.0011); each effect was independent of speed (p ≥ 0.15). To minimize asymmetry, athletes with unilateral TTA should use an Xtend or Sprinter RSP with 2 cm shorter than recommended height and stiffness based on intended speed.

6.
IEEE Trans Neural Syst Rehabil Eng ; 27(4): 712-723, 2019 04.
Article in English | MEDLINE | ID: mdl-30872237

ABSTRACT

Here, we present the design of a novel unpowered ankle exoskeleton that is low profile, lightweight, quiet, and low cost to manufacture, intrinsically adapts to different walking speeds, and does not restrict non-sagittal joint motion; while still providing assistive ankle torque that can reduce demands on the biological calf musculature. This paper is an extension of the previously-successful ankle exoskeleton concept by Collins, Wiggin, and Sawicki. We created a device that blends the torque assistance of the prior exoskeleton with the form-factor benefits of clothing. Our design integrates a low profile under-the-foot clutch and a soft conformal shank interface, coupled by an ankle assistance spring that operates in parallel with the user's calf muscles. We fabricated and characterized technical performance of a prototype through benchtop testing and then validated device functionality in two gait analysis case studies. To our knowledge, this is the first ankle plantarflexion assistance exoskeleton that could be feasibly worn under typical daily clothing, without restricting ankle motion, and without components protruding substantially from the shoe, leg, waist, or back. Our new design highlights the potential for performance-enhancing exoskeletons that are inexpensive, unobtrusive, and can be used on a wide scale to benefit a broad range of individuals throughout society, such as the elderly, individuals with impaired plantarflexor muscle strength, or recreational users. In summary, this paper demonstrates how an unpowered ankle exoskeleton could be redesigned to more seamlessly integrate into daily life, while still providing performance benefits for common locomotion tasks.


Subject(s)
Ankle , Artificial Limbs , Exoskeleton Device , Prosthesis Design , Adult , Clothing , Electromyography , Humans , Leg , Male , Muscle, Skeletal/physiology , Patient Acceptance of Health Care , Shoes , Social Environment , Torque , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...