Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 21(8): 2055-2062, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35787094

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Cellulose/analogs & derivatives , Esters , Humans , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
J Clin Microbiol ; 59(12): e0077821, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34586893

ABSTRACT

The SARS-CoV-2 pandemic has strained manufacturing capacity worldwide, resulting in significant shortages of laboratory supplies both directly and indirectly. Such shortages include probe-based kits for detection of the Mycobacterium tuberculosis complex from positive liquid broth cultures. These shortages and possible loss of this particular assay have consequences for laboratory testing algorithms and public health in the United States. As there are no FDA-approved, commercially available options that currently exist which could immediately fill this gap, laboratories must identify alternatives and plan for modifying current testing algorithms to accommodate this change.


Subject(s)
COVID-19 , Mycobacterium , Tuberculosis , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/diagnosis , United States
3.
PLoS One ; 12(8): e0182739, 2017.
Article in English | MEDLINE | ID: mdl-28771597

ABSTRACT

Cancer therapies can provide substantially improved survival in some patients while other seemingly similar patients receive little or no benefit. Strategies to identify patients likely to respond well to a given therapy could significantly improve health care outcomes by maximizing clinical benefits while reducing toxicities and adverse effects. Using a glycan microarray assay, we recently reported that pretreatment serum levels of IgM specific to blood group A trisaccharide (BG-Atri) correlate positively with overall survival of cancer patients on PROSTVAC-VF therapy. The results suggested anti-BG-Atri IgM measured prior to treatment could serve as a biomarker for identifying patients likely to benefit from PROSTVAC-VF. For continued development and clinical application of serum IgM specific to BG-Atri as a predictive biomarker, a clinical assay was needed. In this study, we developed and validated a Luminex-based clinical assay for measuring serum IgM specific to BG-Atri. IgM levels were measured with the Luminex assay and compared to levels measured using the microarray for 126 healthy individuals and 77 prostate cancer patients. This assay provided reproducible and consistent results with low %CVs, and tolerance ranges were established for the assay. IgM levels measured using the Luminex assay were found to be highly correlated to the microarray results with R values of 0.93-0.95. This assay is a Laboratory Developed Test (LDT) and is suitable for evaluating thousands of serum samples in CLIA certified laboratories that have validated the assay. In addition, the study demonstrates that discoveries made using neoglycoprotein-based microarrays can be readily migrated to a clinical assay.


Subject(s)
Cancer Vaccines/therapeutic use , Immunoglobulin M/blood , Immunologic Tests/methods , Oligosaccharides/immunology , Prostatic Neoplasms/therapy , ABO Blood-Group System , Biomarkers/metabolism , Humans , Male , Oligosaccharides, Branched-Chain , Polysaccharides/metabolism , Prostatic Neoplasms/immunology , Protein Array Analysis , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...