Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 44859-44866, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37688539

ABSTRACT

Room-temperature ionic liquids (RTILs) have attracted significant attention owing to their unique nature and a variety of potential applications. The archetypal RTIL comprising an aliphatic primary ammonium was discovered over a century ago, but this cation is seldom used in modern RTILs because other bulky cations (e.g., quaternary ammonium-, pyridine-, and imidazole-based cations) are prominent in current major applications, such as electrolytes and solvents, which require low and/or reversible reactivities. However, although the design of materials should change according to the intended application, RTIL designs remain conventional even when applied in unexplored fields, limiting their functions. Herein, RTIL consisting of an archetypal aliphatic primary ammonium (i.e., n-octylammonium: OA) cation and a modern bis(trifluoromethylsulfonyl)imide (TFSI) anion is proposed and demonstrated as a highly functional additive for a 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which is the most common hole transport material (HTM), in perovskite solar cells (PSCs). The OA-TFSI additive exhibits prominent functions via permanent reactions of the component ions with the PSC components, thus providing several advantages. The OA cations spontaneously and densely passivate the perovskite layer during the HTM deposition process, leading to both suppression of carrier recombination at the HTM/perovskite interface and hydrophobic perovskite surfaces. Meanwhile, the TFSI anions effectively improve the HTM function most likely via efficient stabilization of the Spiro-OMeTAD radical, enhancing hole collection properties in the PSCs. Consequently, PSC performances involving long-term stability were significantly improved using the OA-TFSI additive. Based on the present results, this study advocates that reconsidering the RTIL design, even when it differs from the current major designs yet is suitable for a target application, can provide functions superior to conventional ones. The insights obtained in this work will spur further study of RTIL designs and aid the development of the broad materials science field including PSCs.

2.
Biosens Bioelectron ; 74: 725-30, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26210470

ABSTRACT

Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/µl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Lab-On-A-Chip Devices , Polymerase Chain Reaction/instrumentation , Spectrometry, Fluorescence/instrumentation , Bacterial Load/instrumentation , Biosensing Techniques/instrumentation , DNA, Bacterial/analysis , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
3.
Nat Mater ; 4(2): 163-6, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15665837

ABSTRACT

The research on ferroelectric materials-mostly inorganic compounds or organic polymers-is increasingly motivated by both basic scientific concerns and the potential for practical applications in electronics and optics. Ferroelectricity in organic solids would be important for the development of all-organic electronic and photonic devices. The conventional approach to making organic ferroelectrics is based on the use of polar molecules. Here we report that through supramolecular assembly of nonpolar conjugated molecules, a remarkable ferroelectric response can be obtained in co-crystals of low-molecular-weight organic compounds. Co-crystals of phenazine and chloranilic acid reveal large spontaneous polarization and sizable room-temperature dielectric constants exceeding 100. The present findings provide an approach to making potentially useful organic ferroelectric materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...