Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 22(15): 1584-1594, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34129270

ABSTRACT

The physicochemical properties of room temperature ionic liquids (RTILs) consisting of bis(trifluoromethanesulfonyl)amide (TFSA- ) combined with 1-hexyl-1-methylpyrrolidinium (Pyr1,6+ ), 1-(butoxymethyl)-1-methylpyrrolidinium (Pyr1,1O4+ ), 1-(4-methoxybutyl)-1-methyl pyrrolidinium (Pyr1,4O1+ ), and 1-((2-methoxyethoxy)methyl)-1-methylpyrrolidinium (Pyr1,1O2O1+ ) were investigated using both experimental and computational approaches. Pyr1,1O2O1 TFSA, which contains two ether oxygen atoms, showed the lowest viscosity, and the relationship between its physicochemical properties and the position and number of the ether oxygen atoms was discussed by a careful comparison with Pyr1,1O4 TFSA and Pyr1,4O1 TFSA. Ab initio calculations revealed the conformational flexibility of the side chain containing the ether oxygen atoms. In addition, molecular dynamics (MD) calculations suggested that the ion distributions have a significant impact on the transport properties. Furthermore, the coordination environments of the Li ions in the RTILs were evaluated using Raman spectroscopy, which was supported by MD calculations using 1000 ion pairs. The presented results will be valuable for the design of functionalized RTILs for various applications.

2.
Phys Chem Chem Phys ; 22(29): 17010, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32678393

ABSTRACT

Correction for 'The effects of the position of the ether oxygen atom in pyrrolidinium-based room temperature ionic liquids on their physicochemical properties' by Kazuki Yoshii et al., Phys. Chem. Chem. Phys., 2020, DOI: .

3.
Phys Chem Chem Phys ; 22(35): 19480-19491, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32633294

ABSTRACT

Room temperature ionic liquids (RTILs) containing ether oxygen atoms have been investigated for a gamut of science and technology applications owing to their superior physicochemical properties. However, the effect of the position of the ether oxygen atom in the side chain on their physicochemical properties is not clearly understood. This study investigates, using both experimental and computational approaches, the effect of ether oxygen atoms on the physicochemical properties of RTILs consisting of bis(trifluoromethylsulfonyl)amide (TFSA-) with 1-methyl-1-propylpyrrolidinium (MPP+), 1-butyl-1-methylpyrrolidinium (BMP+), 1-methoxymethyl-1-methylpyrrolidinium (MOMMP+), 1-ethoxymethyl-1-methylpyrrolidinium (EOMMP+), and 1-methoxyethyl-1-methylpyrrolidinium (MOEMP+). The viscosity of the RTILs containing the ether oxygen atom was lower than that of the alkyl analogues. Moreover, the viscosity of EOMMPTFSA was lower than that of MOEMPTFSA, albeit EOMMPTFSA and MOEMPTFSA have the same molecular weight with ether oxygen atoms at different positions. Ab initio calculations reveal that the number of methylene groups between nitrogen and oxygen atoms in the cation structure profoundly impacts the local stable structure of the cation. Furthermore, we discussed the relationship between the transport properties and the spatial distribution of ions obtained by MD simulations. This result will be valuable in the design of functionalized RTILs, via the judicious tuning of the conformational flexibility of ether oxygen atoms in related ionic liquids.

4.
Phys Chem Chem Phys ; 16(6): 2527-32, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24362972

ABSTRACT

Thermoelectrochemical cells (TECs) have the potential to offer a continuous renewable electricity supply from a variety of thermal energy sources. Because of the thermal gradient, the device characteristics are a complex function of temperature dependent electrolyte transport properties, electrode electro-catalytic properties and the Seebeck coefficient of the redox couple. Understanding the interplay between these functions is critical to identifying the limiting factors that need to be overcome to produce more advanced devices. Thus, in this work we have developed a theoretical model for TECs and have measured a range of properties required by the model. We focused attention on the Co(n)(bpy)3(NTf2)n in a [C2mim][B(CN)4] ionic liquid electrolyte as one of the optimal systems for >100 °C operation. The exchange current densities on a range of electrode materials were measured in order to explore the role of electrode function in the simulation. Alternatives to platinum electrodes (maximum output power, Pmax = 183 mW m(-2)), including platinized stainless steel, Pt-SS (Pmax = 188 mW m(-2)) and poly(3,4-ethylenedioxythiophene) deposited on stainless steel, PEDOT-SS (Pmax = 179 mW m(-2)), were shown to be viable options. From the simulations we conclude that for further development of ionic liquid TECs, modifications to the redox couple to increase the Seebeck coefficient, and increasing the rate of diffusion of the redox couple to minimize mass transport resistance, will yield the greatest improvements in device performance.

5.
J Phys Chem B ; 116(36): 11323-31, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22897246

ABSTRACT

To demonstrate a new family of ionic liquids (ILs), i.e., "solvate" ionic liquids, the properties (thermal, transport, and electrochemical properties, Lewis basicity, and ionicity) of equimolar molten mixtures of glymes (triglyme (G3) and tetraglyme (G4)) and nine different lithium salts (LiX) were investigated. By exploring the anion-dependent properties and comparing them with the reported data on common aprotic ILs, two different classes of liquid regimes, i.e., ordinary concentrated solutions and "solvate" ILs, were found in the glyme-Li salt equimolar mixtures ([Li(glyme)]X) depending on the anionic structures. The class a given [Li(glyme)]X belonged to was governed by competitive interactions between the glymes and Li cations and between the counteranions (X) and Li cations. [Li(glyme)]X with weakly Lewis basic anions can form long-lived [Li(glyme)](+) complex cations. Thus, they behaved as typical ionic liquids. The lithium "solvate" ILs based on [Li(glyme)]X have many desirable properties for lithium-conducting electrolytes, including high ionicity, a high lithium transference number, high Li cation concentration, and high oxidative stability, in addition to the common properties of ionic liquids. The concept of "solvate" ionic liquids can be utilized in an unlimited number of combinations of other metal salts and ligands, and will thus open a new field of research on ionic liquids.

6.
J Am Chem Soc ; 133(33): 13121-9, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21774493

ABSTRACT

The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.

7.
Chem Commun (Camb) ; 47(28): 8157-9, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21681323

ABSTRACT

Electrochemical reactions of sulfur supported on three-dimensionally ordered macroporous carbon in glyme-Li salt molten complex electrolytes exhibit good reversibility and large capacity based on the mass of sulfur, which suggests that glyme-Li salt molten complexes are suitable electrolytes for Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...