Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Sci Rep ; 14(1): 10598, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719940

ABSTRACT

A popular and widely suggested measure for assessing unilateral hand motor skills in stroke patients is the box and block test (BBT). Our study aimed to create an augmented reality enhanced version of the BBT (AR-BBT) and evaluate its correlation to the original BBT for stroke patients. Following G-power analysis, clinical examination, and inclusion-exclusion criteria, 31 stroke patients were included in this study. AR-BBT was developed using the Open Source Computer Vision Library (OpenCV). The MediaPipe's hand tracking library uses a palm and a hand landmark machine learning model to detect and track hands. A computer and a depth camera were employed in the clinical evaluation of AR-BBT following the principles of traditional BBT. A strong correlation was achieved between the number of blocks moved in the BBT and the AR-BBT on the hemiplegic side (Pearson correlation = 0.918) and a positive statistically significant correlation (p = 0.000008). The conventional BBT is currently the preferred assessment method. However, our approach offers an advantage, as it suggests that an AR-BBT solution could remotely monitor the assessment of a home-based rehabilitation program and provide additional hand kinematic information for hand dexterities in AR environment conditions. Furthermore, it employs minimal hardware equipment.


Subject(s)
Augmented Reality , Hand , Machine Learning , Stroke Rehabilitation , Stroke , Humans , Male , Female , Middle Aged , Stroke/physiopathology , Aged , Hand/physiopathology , Hand/physiology , Stroke Rehabilitation/methods , Motor Skills/physiology , Adult
2.
Front Pain Res (Lausanne) ; 5: 1372814, 2024.
Article in English | MEDLINE | ID: mdl-38601923

ABSTRACT

Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the Spatial Module, responsible for extracting embeddings from videos; the Heart Rate Encoder, tasked with mapping heart rate signals into a higher dimensional space; the AugmNet, designed to create learning-based augmentations in the latent space; and the Temporal Module, which utilizes the extracted video and heart rate embeddings for the final assessment. The Spatial-Module undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the BioVid database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing 9.62 million parameters for the entire framework.

3.
Article in English | MEDLINE | ID: mdl-38082601

ABSTRACT

An emerging area in data science that has lately gained attention is the virtual population (VP) and synthetic data generation. This field has the potential to significantly affect the healthcare industry by providing a means to augment clinical research databases that have a shortage of subjects. The current study provides a comparative analysis of five distinct approaches for creating virtual data populations from real patient data. The data set utilized for the current analyses involved clinical data collected among patients scheduled for elective coronary artery bypass graft surgery (CABG). To that end, the five computational techniques employed to augment the given dataset were: (i) Tabular Preset, (ii) Gaussian Copula Model (iii) Generative Adversarial Network based (GAN) Deep Learning data synthesizer (CTGAN), (iv) a variation of the CTGAN Model (Copula GAN), and (v) VAE-based Deep Learning data synthesizer (TVAE). The performance of these techniques was assessed against their effectiveness in producing high-quality virtual data. For this purpose, dataset correlation matrices, cosine similarity distance, density histograms, and kernel density estimation are employed to perform a comparative analysis of each attribute and the respective synthetic equivalent. Our findings demonstrate that Gaussian Copula Model prevails in creating virtual data with consistent distributions (Kolmogorov-Smirnov (KS) and Chi-Squared (CS) tests equal to 0.9 and 0.98, respectively) and correlation patterns (average cosine similarity equals to 0.95).Clinical Relevance- It has been shown that the use of a VP can increase the predictive performance of a ML model, i.e., above using a smaller non-augmented population.


Subject(s)
Coronary Artery Bypass , Heart , Humans , Chronic Disease , Data Accuracy , Data Science
4.
Article in English | MEDLINE | ID: mdl-38082778

ABSTRACT

The daily nutrition management is one of the most important issues that concern individuals in the modern lifestyle. Over the years, the development of dietary assessment systems and applications based on food images has assisted experts to manage people's nutritional facts and eating habits. In these systems, the food volume estimation is the most important task for calculating food quantity and nutritional information. In this study, we present a novel methodology for food weight estimation based on a food image, using the Random Forest regression algorithm. The weight estimation model was trained on a unique dataset of 5,177 annotated Mediterranean food images, consisting of 50 different foods with a reference card placed next to the plate. Then, we created a data frame of 6,425 records from the annotated food images with features such as: food area, reference object area, food id, food category and food weight. Finally, using the Random Forest regression algorithm and applying nested cross validation and hyperparameters tuning, we trained the weight estimation model. The proposed model achieves 22.6 grams average difference between predicted and real weight values for each food item record in the data frame and 15.1% mean absolute percentage error for each food item, opening new perspectives in food image-based volume and nutrition estimation models and systems.Clinical Relevance- The proposed methodology is suitable for healthcare systems and applications that monitor an individual's malnutrition, offering the ability to estimate the energy and nutrients consumed using an image of the meal.


Subject(s)
Nutritional Status , Random Forest , Humans , Meals
5.
Article in English | MEDLINE | ID: mdl-38082809

ABSTRACT

Limb spasticity is caused by stroke, multiple sclerosis, traumatic brain injury and various central nervous system pathologies such as brain tumors resulting in joint stiffness, loss of hand function and severe pain. This paper presents with the Rehabotics integrated rehabilitation system aiming to provide highly individualized assessment and treatment of the function of the upper limbs for patients with spasticity after stroke, focusing on the developed passive exoskeletal system. The proposed system can: (i) measure various motor and kinematic parameters of the upper limb in order to evaluate the patient's condition and progress, as well as (ii) offer a specialized rehabilitation program (therapeutic exercises, retraining of functional movements and support of daily activities) through an interactive virtual environment. The outmost aim of this multidisciplinary research work is to create new tools for providing high-level treatment and support services to patients with spasticity after stroke.Clinical Relevance- This paper presents a new passive exoskeletal system aiming to provide enhanced treatment and assessment of patients with upper limb spasticity after stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Treatment Outcome , Upper Extremity , Stroke/complications , Stroke Rehabilitation/methods , Exercise Therapy , Muscle Spasticity/diagnosis , Muscle Spasticity/etiology
6.
Article in English | MEDLINE | ID: mdl-38083139

ABSTRACT

Lower extremity amputation and requirement of peripheral artery revascularization are common outcomes of undiagnosed peripheral artery disease patients. In the current work, prediction models for the need of amputation or peripheral revascularization focused on hypertensive patients within seven years follow up are employed. We applied machine learning (ML) models using classifiers such as Extreme Gradient Boost (XGBoost), Random Forest (RF) and Adaptive Boost (AdaBoost), that will allow clinicians to identify the patients at risk of these two endpoints using simple clinical data. We used the non-interventional cohort of the getABI study in the primary care setting, selecting 4,191 hypertensive patients out of 6,474 patients with age over 65 years old and followed up for vascular events or death up to 7 years. During this follow up period, 150 patients underwent either amputation or peripheral revascularization or both. Accuracy, Specificity, Sensitivity and Area under the receiver operating characteristic curve (AUC) were estimated for each machine learning model. The results demonstrate Random Forest as the most accurate model for the prediction of the composite endpoint in hypertensive patients within 7 years follow-up, achieving 73.27 % accuracy.Clinical Relevance-This study assists clinicians to better predict and treat these serious outcomes, amputation and peripheral revascularization in hypertensive patients.


Subject(s)
Arteries , Vascular Surgical Procedures , Humans , Aged , Follow-Up Studies , Amputation, Surgical , Machine Learning
7.
Article in English | MEDLINE | ID: mdl-38083146

ABSTRACT

Coronary artery disease (CAD) is a chronic disease associated with high mortality and morbidity. Although treatment with drug-eluting stents is the most frequent interventional approach for coronary artery disease, drug-coated balloons (DCBs) constitute an innovative alternative, especially in the presence of certain anatomical conditions in the local coronary vasculature. DCBs allow the fast and homogenous transfer of drugs into the arterial wall, during the balloon inflation. Their use has been established for treating in-stent restenosis caused by stent implantation, while recent clinical trials have shown a satisfactory efficacy in de novo small-vessel disease. Several factors affect DCBs performance including the catheter design, the drug dose and formulation. Cleverballoon focuses on the design and development of an innovative DCB with everolimus. For the realization of the development of this new DCB, an integrated approach, including in- vivo, in-vitro studies and in-silico modelling towards the DCB optimization, is presented.Clinical Relevance-The proposed study introduces the integration of in- vivo, in-vitro and in silico approaches in the design and development process of a new DCB, following the principles of 3R's for the replacement, reduction, and refinement of animal and clinical studies.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Animals , Coronary Artery Disease/therapy , Everolimus/pharmacology , Treatment Outcome
8.
JCO Clin Cancer Inform ; 7: e2300101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38061012

ABSTRACT

PURPOSE: The explosion of big data and artificial intelligence has rapidly increased the need for integrated, homogenized, and harmonized health data. Many common data models (CDMs) and standard vocabularies have appeared in an attempt to offer harmonized access to the available information, with Observational Medical Outcomes Partnership (OMOP)-CDM being one of the most prominent ones, allowing the standardization and harmonization of health care information. However, despite its flexibility, still capturing imaging metadata along with the corresponding clinical data continues to pose a challenge. This challenge arises from the absence of a comprehensive standard representation for image-related information and subsequent image curation processes and their interlinkage with the respective clinical information. Successful resolution of this challenge holds the potential to enable imaging and clinical data to become harmonized, quality-checked, annotated, and ready to be used in conjunction, in the development of artificial intelligence models and other data-dependent use cases. METHODS: To address this challenge, we introduce medical imaging (MI)-CDM-an extension of the OMOP-CDM specifically designed for registering medical imaging data and curation-related processes. Our modeling choices were the result of iterative numerous discussions among clinical and AI experts to enable the integration of imaging and clinical data in the context of the ProCAncer-I project, for answering a set of clinical questions across the prostate cancer's continuum. RESULTS: Our MI-CDM extension has been successfully implemented for the use case of prostate cancer for integrating imaging and curation metadata along with clinical information by using the OMOP-CDM and its oncology extension. CONCLUSION: By using our proposed terminologies and standardized attributes, we demonstrate how diverse imaging modalities can be seamlessly integrated in the future.


Subject(s)
Metadata , Prostatic Neoplasms , Male , Humans , Artificial Intelligence , Databases, Factual , Diagnostic Imaging
9.
Article in English | MEDLINE | ID: mdl-38083761

ABSTRACT

Sjögren's Syndrome (SS) patients with mucosa associated lymphoid tissue lymphomas (MALTLs) and diffuse large B-cell lymphomas (DLBCLs) have 10-year survival rates of 80% and 40%, respectively. This highlights the unique biologic burden of the two histologic forms, as well as, the need for early detection and thorough monitoring of these patients. The lack of MALTL patients and the fact that most studies are single cohort and combine patients with different lymphoma subtypes narrow the understanding of MALTL progression. Here, we propose a data augmentation pipeline that utilizes an advanced synthetic data generator which is trained on a Pan European data hub with primary SS (pSS) patients to yield a high-quality synthetic data pool. The latter is used for the development of an enhanced MALTL classification model. Four scenarios were defined to assess the reliability of augmentation. Our results revealed an overall improvement in the accuracy, sensitivity, specificity, and AUC by 7%, 6.3%, 9%, and 6.3%, respectively. This is the first case study that utilizes data augmentation to reflect the progression of MALTL in pSS.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Sjogren's Syndrome , Stomach Neoplasms , Humans , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/complications , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/complications , Reproducibility of Results
10.
Brain Sci ; 13(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37190554

ABSTRACT

Affective state estimation is a research field that has gained increased attention from the research community in the last decade. Two of the main catalysts for this are the advancement in the data analysis using artificial intelligence and the availability of high-quality video. Unfortunately, benchmarks and public datasets are limited, thus making the development of new methodologies and the implementation of comparative studies essential. The current work presents the eSEE-d database, which is a resource to be used for emotional State Estimation based on Eye-tracking data. Eye movements of 48 participants were recorded as they watched 10 emotion-evoking videos, each of them followed by a neutral video. Participants rated four emotions (tenderness, anger, disgust, sadness) on a scale from 0 to 10, which was later translated in terms of emotional arousal and valence levels. Furthermore, each participant filled three self-assessment questionnaires. An extensive analysis of the participants' answers to the questionnaires' self-assessment scores as well as their ratings during the experiments is presented. Moreover, eye and gaze features were extracted from the low-level eye-recorded metrics, and their correlations with the participants' ratings are investigated. Finally, we take on the challenge to classify arousal and valence levels based solely on eye and gaze features, leading to promising results. In particular, the Deep Multilayer Perceptron (DMLP) network we developed achieved an accuracy of 92% in distinguishing positive valence from non-positive and 81% in distinguishing low arousal from medium arousal. The dataset is made publicly available.

11.
Magn Reson Imaging ; 101: 1-12, 2023 09.
Article in English | MEDLINE | ID: mdl-37004467

ABSTRACT

Magnetic Resonance (MR) images suffer from spatial inhomogeneity, known as bias field corruption. The N4ITK filter is a state-of-the-art method used for correcting the bias field to optimize MR-based quantification. In this study, a novel approach is presented to quantitatively evaluate the performance of N4 bias field correction for pelvic prostate imaging. An exploratory analysis, regarding the different values of convergence threshold, shrink factor, fitting level, number of iterations and use of mask, is performed to quantify the performance of N4 filter in pelvic MR images. The performance of a total of 240 different N4 configurations is examined using the Full Width at Half Maximum (FWHM) of the segmented periprostatic fat distribution as evaluation metric. Phantom T2weighted images were used to assess the performance of N4 for a uniform test tissue mimicking material, excluding factors such as patient related susceptibility and anatomy heterogeneity. Moreover, 89 and 204 T2weighted patient images from two public datasets acquired by scanners with a combined surface and endorectal coil at 1.5 T and a surface coil at 3 T, respectively, were utilized and corrected with a variable set of N4 parameters. Furthermore, two external public datasets were used to validate the performance of the N4 filter in T2weighted patient images acquired by various scanning conditions with different magnetic field strengths and coils. The results show that the set of N4 parameters, converging to optimal representations of fat in the image, were: convergence threshold 0.001, shrink factor 2, fitting level 6, number of iterations 100 and the use of default mask for prostate images acquired by a combined surface and endorectal coil at both 1.5 T and 3 T. The corresponding optimal N4 configuration for MR prostate images acquired by a surface coil at 1.5 T or 3 T was: convergence threshold 0.001, shrink factor 2, fitting level 5, number of iterations 25 and the use of default mask. Hence, periprostatic fat segmentation can be used to define the optimal settings for achieving T2weighted prostate images free from bias field corruption to provide robust input for further analysis.


Subject(s)
Image Processing, Computer-Assisted , Prostate , Male , Humans , Prostate/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Bias , Phantoms, Imaging
12.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112243

ABSTRACT

Parkinson's disease (PD) is characterized by a variety of motor and non-motor symptoms, some of them pertaining to gait and balance. The use of sensors for the monitoring of patients' mobility and the extraction of gait parameters, has emerged as an objective method for assessing the efficacy of their treatment and the progression of the disease. To that end, two popular solutions are pressure insoles and body-worn IMU-based devices, which have been used for precise, continuous, remote, and passive gait assessment. In this work, insole and IMU-based solutions were evaluated for assessing gait impairment, and were subsequently compared, producing evidence to support the use of instrumentation in everyday clinical practice. The evaluation was conducted using two datasets, generated during a clinical study, in which patients with PD wore, simultaneously, a pair of instrumented insoles and a set of wearable IMU-based devices. The data from the study were used to extract and compare gait features, independently, from the two aforementioned systems. Subsequently, subsets comprised of the extracted features, were used by machine learning algorithms for gait impairment assessment. The results indicated that insole gait kinematic features were highly correlated with those extracted from IMU-based devices. Moreover, both had the capacity to train accurate machine learning models for the detection of PD gait impairment.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Humans , Parkinson Disease/diagnosis , Gait , Shoes , Physical Therapy Modalities
13.
Sci Rep ; 13(1): 714, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639671

ABSTRACT

Automatic segmentation of the prostate of and the prostatic zones on MRI remains one of the most compelling research areas. While different image enhancement techniques are emerging as powerful tools for improving the performance of segmentation algorithms, their application still lacks consensus due to contrasting evidence regarding performance improvement and cross-model stability, further hampered by the inability to explain models' predictions. Particularly, for prostate segmentation, the effectiveness of image enhancement on different Convolutional Neural Networks (CNN) remains largely unexplored. The present work introduces a novel image enhancement method, named RACLAHE, to enhance the performance of CNN models for segmenting the prostate's gland and the prostatic zones. The improvement in performance and consistency across five CNN models (U-Net, U-Net++, U-Net3+, ResU-net and USE-NET) is compared against four popular image enhancement methods. Additionally, a methodology is proposed to explain, both quantitatively and qualitatively, the relation between saliency maps and ground truth probability maps. Overall, RACLAHE was the most consistent image enhancement algorithm in terms of performance improvement across CNN models with the mean increase in Dice Score ranging from 3 to 9% for the different prostatic regions, while achieving minimal inter-model variability. The integration of a feature driven methodology to explain the predictions after applying image enhancement methods, enables the development of a concrete, trustworthy automated pipeline for prostate segmentation on MR images.


Subject(s)
Image Processing, Computer-Assisted , Prostate , Male , Humans , Prostate/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Algorithms
14.
IEEE Rev Biomed Eng ; 16: 260-277, 2023.
Article in English | MEDLINE | ID: mdl-33729950

ABSTRACT

Eye behaviour provides valuable information revealing one's higher cognitive functions and state of affect. Although eye tracking is gaining ground in the research community, it is not yet a popular approach for the detection of emotional and cognitive states. In this paper, we present a review of eye and pupil tracking related metrics (such as gaze, fixations, saccades, blinks, pupil size variation, etc.) utilized towards the detection of emotional and cognitive processes, focusing on visual attention, emotional arousal and cognitive workload. Besides, we investigate their involvement as well as the computational recognition methods employed for the reliable emotional and cognitive assessment. The publicly available datasets employed in relevant research efforts were collected and their specifications and other pertinent details are described. The multimodal approaches which combine eye-tracking features with other modalities (e.g. biosignals), along with artificial intelligence and machine learning techniques were also surveyed in terms of their recognition/classification accuracy. The limitations, current open research problems and prospective future research directions were discussed for the usage of eye-tracking as the primary sensor modality. This study aims to comprehensively present the most robust and significant eye/pupil metrics based on available literature towards the development of a robust emotional or cognitive computational model.


Subject(s)
Artificial Intelligence , Eye-Tracking Technology , Humans , Pupil , Workload , Cognition
15.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560313

ABSTRACT

Parkinson's disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups. Assessment of PD patients has been performed by neurologists specialized in movement disorders using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-Part III: Motor Examination, on both ON and OFF medication states. Using as a reference point the quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal, mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal the dominant features to be used for four classification tasks. Specifically, for identifying relations between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost, Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD severity levels relevant to MDS-UPDRS: Part III ratings, respectively.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Gait , Mental Status and Dementia Tests , Machine Learning , Severity of Illness Index
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 621-624, 2022 07.
Article in English | MEDLINE | ID: mdl-36085907

ABSTRACT

Atherosclerosis is one of the most mortal diseases that affects the arterial vessels, due to accumulation of plaque, altering the hemodynamic environment of the artery by preventing the sufficient delivery of blood to other organs. Stents are expandable tubular wires, used as a treatment option. In silico studies have been extensively exploited towards examining the performance of such devices by employing Finite Element Modeling. This study models the crimping stage during stent implantation to examine the effect of inclusion of pre-stress state of the stent. The results show that modeling of the crimping stress state of the stent prior to the deployment results in under-expansion of the stent, due to the indirect inclusion of strain-induced hardening effects. As a result, it is evident that the compressive stent stress configuration is important to be considered in the computational modeling approaches of stent deployment.


Subject(s)
Atherosclerosis , Data Compression , Arteries , Computer Simulation , Humans , Stents
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1049-1052, 2022 07.
Article in English | MEDLINE | ID: mdl-36086027

ABSTRACT

The overwhelming need to improve the quality of complex data structures in healthcare is more important than ever. Although data quality has been the point of interest in many studies, none of them has focused on the development of quantitative and explainable methods for data imputation. In this work, we propose a "smart" imputation workflow to address missing data across complex data structures in the context of in silico clinical trials. AI algorithms were utilized to produce high-quality virtual patient profiles. A search algorithm was then developed to extract the best virtual patient profiles through the definition of a profile matching score (PMS). A case study was conducted, where the real dataset was randomly contaminated with multiple missing values (e.g., 10 to 50%). In total, 10000 virtual patient profiles with less than 0.02 Kullback-Leibler (KL) divergence were produced to estimate the PMS distribution. The best generator achieved the lowest average squared absolute difference (0.4) and average correlation difference (0.02) with the real dataset highlighting its increased effectiveness for data imputation across complex clinical data structures.


Subject(s)
Algorithms , Humans , Quality Control
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1770-1773, 2022 07.
Article in English | MEDLINE | ID: mdl-36086178

ABSTRACT

The objective of this work focuses on multiple independent user profiles that capture behavioral, emotional, medical, and physical patterns in the working and living environment resulting in one general user profile. Depending on the user's current activity (e.g. walking, eating, etc.), medical history, and other influential factors, the developed framework acts as a supplemental assistant to the user by providing not only the ability to enable supportive functionalities (e.g. image filtering, magnification, etc.) but also informative recommendations (e.g. diet, alcohol, etc.). The personalization of such a profile lies within the user's past preferences using human activity recognition as a base, and it is achieved through a statistical model, the Bayesian belief network. Training and real-time methodological pipelines are introduced and validated. The employed deep learning techniques for identifying human activities are presented and validated in publicly available and in-house datasets. The overall accuracy of human activity recognition reaches up to 86.96 %.


Subject(s)
Human Activities , Recognition, Psychology , Bayes Theorem , Humans , Walking
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4970-4973, 2022 07.
Article in English | MEDLINE | ID: mdl-36086562

ABSTRACT

Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.


Subject(s)
Absorbable Implants , Percutaneous Coronary Intervention , Stents , Tissue Scaffolds
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3839-3842, 2022 07.
Article in English | MEDLINE | ID: mdl-36086640

ABSTRACT

The left atrium (LA) is one of the cardiac cavities with the most complex anatomical structures. Its role in the clinical diagnosis and patient's management is critical, as it is responsible for the atrial fibrillation, a condition that promotes the thrombogenesis inside the left atrial appendage. The development of an automated approach for LA segmentation is a demanding task mainly due to its anatomical complexity and the variation of its shape among patients. In this study, we focus to develop an unbiased pipeline capable to segment the atrial cavity from CT images. For evaluation purposes state-of-the-art metrics were used to assess the segmentation results. Particularly, the results indicated the mean values of the dice score 80%, the hausdorff distance 11.78mm, the average surface distance 2.24mm and the rand error index 0.2.


Subject(s)
Atrial Fibrillation , Deep Learning , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...