Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 468-469: 832-42, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24076504

ABSTRACT

Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play regions.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Exposure/analysis , Extraction and Processing Industry/statistics & numerical data , Natural Gas , Risk Assessment/methods , Volatile Organic Compounds/analysis , Air Pollutants, Occupational/toxicity , Humans , Texas , Volatile Organic Compounds/toxicity
2.
Chemosphere ; 80(5): 481-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20553933

ABSTRACT

The Lower Passaic River (LPR) is one of the most heavily industrialized waterways in the US with both historical and continuing discharges of chemicals from point and non-point sources. Significant efforts have been initiated on behalf of public, private, and regulatory entities to restore this degraded urban river. Considerable attention has been devoted to characterizing environmental media with respect to human and ecological risk. As part of these efforts, a wealth of environmental data have been collected and analyzed for a variety of metals, pesticides, organic compounds, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins/furans (PCDD/Fs), and dioxin-like compounds. The objectives of the study described in this paper were two-fold: (1) to generate LPR-specific data for use in human health risk assessment by characterizing concentrations of contaminants in LPR fish tissue samples based on publicly available data using a methodical and transparent approach, and (2) using the resulting data, to calculate the contaminant concentrations in a "Representative Fish," which is a representation of proportional fish tissue concentrations calculated based upon consumption patterns of LPR anglers. The data reduction, processing, and analyses described provide a representative dataset for the conduct of a human health assessment associated with fish consumption from the LPR.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Benzofurans/metabolism , Databases, Factual , Environmental Exposure/analysis , Environmental Restoration and Remediation , Polychlorinated Biphenyls/metabolism , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/metabolism , Polymers/metabolism , Risk Assessment , Rivers/chemistry , Water Pollution, Chemical/statistics & numerical data
3.
Sci Total Environ ; 408(2): 209-24, 2009 Dec 20.
Article in English | MEDLINE | ID: mdl-19395001

ABSTRACT

The Lower Passaic River (LPR) in New Jersey has been impacted by variety of human activities over the course of the last two centuries. In this risk assessment, we assessed potential human health risks associated with consumption of fish from the LPR, the human exposure pathway of greatest concern when addressing contaminated sediments. Our risk assessment incorporates fish consumption information gathered during a year-long, intercept-style creel angler survey and representative fish tissue concentrations for 156 chemicals of potential concern (COPCs) obtained from USEPA's public database (OurPassaic website: http://www.ourpassaic.org/projectsites/premis_public/index.cfm?fuseaction=contaminants). Due to the large number of COPCs investigated, this risk assessment was divided into two phases: (1) identification of COPCs that contribute to the majority of overall excess cancer risk and hazard estimates using deterministic and probabilistic methods, and (2) probabilistic characterization of risk using distributions of chemical concentration and cooking loss for those compounds identified in Phase 1. Phase 1 relied on point estimates of COPC concentrations and demonstrated that PCDD/Fs and PCBs (dioxin-like and non-dioxin-like) are the greatest contributors to cancer risk, while non-dioxin-like PCBs are the primary contributors to non-cancer hazard estimates. Total excess cancer risks for adult and child and receptors estimated in Phase 1 were within USEPA's acceptable excess cancer risk range, with the exception of RME child (3.0 x 10(-4) and 1.3 x 10(-4) for deterministic and probabilistic approaches, respectively). Phase 2 focused on PCDD, PCDF, and PCBs and used distributions of chemical concentrations in fish. The results showed that all excess cancer risk estimates were within the acceptable risk range, although non-cancer hazard estimates for PCBs slightly exceeded a Hazard Index of 1. This HHRA of LPR fish ingestion represents the most comprehensive evaluation conducted to date, and demonstrates that measured concentrations of COPCs are not likely to pose a health risk to people who currently consume fish from the LPR.


Subject(s)
Fishes , Risk Assessment/methods , Seafood/poisoning , Water Pollutants, Chemical/analysis , Adult , Animals , Child , Dioxins/analysis , Food Contamination , Humans , New Jersey , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/analysis , Rivers , Urban Population
4.
J Food Sci ; 73(4): T33-41, 2008 May.
Article in English | MEDLINE | ID: mdl-18460143

ABSTRACT

A recent study by the U.S. Food and Drug Administration (FDA) indicated that some beverages contained benzene at levels above the federal drinking water standard of 5 parts per billion (ppb). In tests conducted by the FDA, Crystal Light Sunrise Classic Orange (CLSCO) was reported to contain benzene levels as high as 87.9 ppb. The purpose of the present study was to better characterize benzene concentrations in CLSCO and to quantify potential human health risks. Twenty-eight samples of CLSCO were obtained from retail stores in Houston, Tex., U.S.A. The mean benzene concentrations in 16 oz original and new formulation bottles were 90 and 0.18 ppb, respectively, while 64-oz bottles contained an average of 3.38 ppb. A variety of exposure scenarios were evaluated to determine potential health risks using both deterministic and probabilistic techniques. In the deterministic analyses, upper bound point estimate cancer risks ranged from 5.4E-6 to 8.7E-8, while hazard indices (HI) ranged from 0.28 to 0.00104. Probabilistic analyses were conducted to develop more realistic cancer risk estimates. In these analyses, the 50th and 95th percentile cancer risk estimates were 3.7E-6 and 8.0E-6, and the 50th and 95th percentile hazard indices were 0.19 and 0.42, respectively. In conclusion, all cancer risk estimates and noncancer hazards met the typical health risk benchmarks established by the U.S. regulatory agencies (1E-4 to 1E-6 for cancer and hazard indices less than 1.0).


Subject(s)
Benzene/analysis , Benzene/toxicity , Beverages/analysis , Humans , Monte Carlo Method , Neoplasms/chemically induced , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...