Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 213: 902-914, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35690163

ABSTRACT

Burkholderia sacchari LFM101 LMG19450T is a Brazilian bacterium isolated from sugarcane crops soil and a promising biotechnological platform for bioprocesses. It is an efficient producer of poly(3-hydroxybutyrate) from carbohydrates including xylose. In the present work, the expression of B. sacchari xylose consumption genes (xylA, xylB and tktA) was combined with the expression of Aeromonas sp. phaC (PHA synthase), aiming to increase both the growth rates in xylose and the 3-hydroxyhexanoate (3HHx) molar fractions in the produced PHA. Genes were cloned into pBBR1MCS-2 vectors and then expressed in the B. sacchari PHA- mutant LFM344. Maximum specific growth rates on xylose and PHA accumulation capacity of all recombinants were evaluated. In bioreactor experiments, up to 55.5 % CDW was accumulated as copolymer, hexanoate conversion to 3HHx raised from 2 % to 54 % of the maximum theoretical value, compared to wild type. 3HHx mol% ranged from 8 to 35, and molecular weights were between 111 and 220 kg/mol. Thermal analysis measurement showed a decrease in Tg and Tm values with higher 3HHx fraction, indicating improved thermomechanical characteristics. Recombinants construction and bioreactor strategies allowed the production of P(3HB-co-3HHx) with controlled monomeric composition from xylose and hexanoate, allowing its application in diverse fields, including the medical area.


Subject(s)
Caproates , Xylose , 3-Hydroxybutyric Acid , Burkholderiaceae , Hydroxybutyrates/metabolism
2.
Int J Biol Macromol ; 163: 240-250, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32622773

ABSTRACT

Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.


Subject(s)
Coenzymes/metabolism , Phosphogluconate Dehydrogenase/metabolism , Polyhydroxyalkanoates/biosynthesis , Pseudomonas/metabolism , Carbohydrate Metabolism , Enzyme Activation , Genome, Bacterial , Metabolic Networks and Pathways , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Substrate Specificity , Virulence
3.
Article in English | MEDLINE | ID: mdl-31970153

ABSTRACT

Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.

4.
Int J Biol Macromol ; 114: 512-519, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29548920

ABSTRACT

Pseudomonas sp. PHA- was used as host for PHA biosynthesis genes from Aeromonas sp. to produce 3HB-co-3HAMCL from glucose with no supply of co-substrates. A non-naturally-occurring PHA composed mainly of 3HB, 3HHx and 3HD (3HO, 3HDdΔ5 and 3HDd monomers were detected in smaller amounts) was obtained. The polymer was extracted using two different solvents (acetone and chloroform) and subject to the following characterization tests: FTIR, DSC, TGA and GPC. The latter suggests a block copolymer since a single and narrow elution peak was observed for each sample. The DSC results ruled out the possibility of a random copolymer and agrees with a single copolymer composed of two blocks: one with the typical composition of PHAMCL produced by Pseudomonas and another containing 3HB and 3HHx with a high 3HHx molar fraction. Thus, this study increases the perspectives of P(3HB-co-3HAMCL) production from carbohydrates as the sole carbon source.


Subject(s)
Glucose/metabolism , Microorganisms, Genetically-Modified/metabolism , Polyesters/metabolism , Pseudomonas/metabolism , Aeromonas/genetics , Carbon/metabolism , Microorganisms, Genetically-Modified/genetics , Pseudomonas/genetics
5.
J Ind Microbiol Biotechnol ; 45(3): 165-173, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29349569

ABSTRACT

Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (YP3HB/Xil = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Burkholderia/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Xylose/metabolism , Bacterial Proteins , Biomass , Biopolymers , Burkholderia/genetics , Burkholderiaceae , Catalysis , Chemistry, Pharmaceutical , DNA/chemistry , Fermentation , Industrial Microbiology , Operon , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmids/metabolism
6.
Int J Biol Macromol ; 98: 654-663, 2017 May.
Article in English | MEDLINE | ID: mdl-28167112

ABSTRACT

Biopolymers as polyhydroxyalkanoates (PHA) composed by different co-monomers 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] has attracted interest since its properties are similar to low density polyethylene. Burkholderia sacchari produces this copolymer with a very low 3HHx molar fraction, about 2 mol%. B. sacchari mutant (unable to produce polymer) was engineered to host PHA biosynthesis genes (phaPCJ) from Aeromonas sp. In addition, a two-step bioprocess to increase biopolymer production was developed. The combination of these techniques resulted in the production of P(3HB-co-3HHx) with 3HHx content up to 20 mol%. The PHA content was about 78% of dry biomass, resulting in PHA volumetric productivities around 0.45gl-1h-1. The P(3HB-co-3HHx) containing 20 mol% of 3HHx presented an elongation at brake of 945%, higher than reported before for this PHA composition. Here we have described an approach to increase 3HHx content into the copolymer, allowing the precise control of the 3HHx molar fractions.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Biopolymers/biosynthesis , Burkholderia/chemistry , 3-Hydroxybutyric Acid/chemistry , Aeromonas/chemistry , Biopolymers/chemistry , Caproates/chemistry , Fermentation , Polyhydroxyalkanoates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...