Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0303741, 2024.
Article in English | MEDLINE | ID: mdl-38809930

ABSTRACT

Studying sound production at different developmental stages can provide insight into the processes involved in vocal ontogeny. Humpback whales (Megaptera novaeangliae) are a known vocal learning species, but their vocal development is poorly understood. While studies of humpback whale calves in the early stages of their lives on the breeding grounds and migration routes exist, little is known about the behavior of these immature, dependent animals by the time they reach the feeding grounds. In this study, we used data from groups of North Atlantic humpback whales in the Gulf of Maine in which all members were simultaneously carrying acoustic recording tags attached with suction cups. This allowed for assignment of likely caller identity using the relative received levels of calls across tags. We analyzed data from 3 calves and 13 adults. There were high levels of call rate variation among these individuals and the results represent preliminary descriptions of calf behavior. Our analysis suggests that, in contrast to the breeding grounds or on migration, calves are no longer acoustically cryptic by the time they reach their feeding ground. Calves and adults both produce calls in bouts, but there may be some differences in bout parameters like inter-call intervals and bout durations. Calves were able to produce most of the adult vocal repertoire but used different call types in different proportions. Finally, we found evidence of immature call types in calves, akin to protosyllables used in babbling in other mammals, including humans. Overall, the sound production of humpback whale calves on the feeding grounds appears to be already similar to that of adults, but with differences in line with ontogenetic changes observed in other vocal learning species.


Subject(s)
Humpback Whale , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Humpback Whale/physiology , Feeding Behavior/physiology , Acoustics , Female , Male
2.
R Soc Open Sci ; 11(3): 231608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481982

ABSTRACT

Acoustic recording tags provide fine-scale data linking acoustic signalling with individual behaviour; however, when an animal is in a group, it is challenging to tease apart calls of conspecifics and identify which individuals produce each call. This, in turn, prohibits a robust assessment of individual acoustic behaviour including call rates and silent periods, call bout production within and between individuals, and caller location. To overcome this challenge, we simultaneously instrumented small groups of humpback whales on a western North Atlantic feeding ground with sound and movement recording tags. This approach enabled a comparison of the relative amplitude of each call across individuals to infer caller identity for 97% of calls. We recorded variable call rates across individuals (mean = 23 calls/h) and groups (mean = 55 calls/h). Calls were produced throughout dives, and most calls were produced in bouts with short inter-call intervals of 2.2 s. Most calls received a likely response from a conspecific within 100 s. This caller identification (ID) method facilitates studying both individual- and group-level acoustic behaviour, yielding novel results about the nature of sequence production and vocal exchanges in humpback whale social calls. Future studies can expand on these caller ID methods for understanding intra-group communication across taxa.

3.
PeerJ ; 8: e8538, 2020.
Article in English | MEDLINE | ID: mdl-32181052

ABSTRACT

Nursing influences growth rate and overall health of mammals; however, the behavior is difficult to study in wild cetaceans because it occurs below the surface and can thus be misidentified from surface observations. Nursing has been observed in humpback whales on the breeding and calving grounds, but the behavior remains unstudied on the feeding grounds. We instrumented three dependent calves (four total deployments) with combined video and 3D-accelerometer data loggers (CATS) on two United States feeding grounds to document nursing events. Two associated mothers were also tagged to determine if behavior diagnostic of nursing was evident in the mother's movement. Animal-borne video was manually analyzed and the average duration of successful nursing events was 23 s (±7 sd, n = 11). Nursing occurred at depths between 4.1-64.4 m (along the seafloor) and in close temporal proximity to foraging events by the mothers, but could not be predicted solely by relative positions of mother and calf. When combining all calf deployments, successful nursing was documented eleven times; totaling only 0.3% of 21.0 hours of video. During nursing events, calves had higher overall dynamic body acceleration (ODBA) and increased fluke-stroke rate (FSR) compared to non-nursing segments (Mixed effect models, ODBA: F1,107 = 13.57756, p = 0.0004, FSR: F1,107 = 32.31018, p < 0.0001). In contrast, mothers had lower ODBA and reduced FSR during nursing events compared to non-nursing segments. These data provide the first characterization of accelerometer data of humpback whale nursing confirmed by animal-borne video tags and the first analysis of nursing events on feeding grounds. This is an important step in understanding the energetic consequences of lactation while foraging.

SELECTION OF CITATIONS
SEARCH DETAIL
...