Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 61(9): 2054-2065, 2018 09.
Article in English | MEDLINE | ID: mdl-29754289

ABSTRACT

AIMS/HYPOTHESIS: Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP1) has been recently identified as a proinflammatory adipokine. We examined whether WISP1 expression and circulating levels are altered in type 2 diabetes and whether WISP1 affects insulin signalling in muscle cells and hepatocytes. METHODS: Serum and visceral adipose tissue (VAT) biopsies, for analysis of circulating WISP1 levels by ELISA and WISP1 mRNA expression by real-time quantitative RT-PCR, were collected from normal-weight men (control group, n = 33) and obese men with (n = 46) and without type 2 diabetes (n = 56) undergoing surgery. Following incubation of primary human skeletal muscle cells (hSkMCs) and murine AML12 hepatocytes with WISP1 and insulin, insulin signalling was analysed by western blotting. The effect of WISP1 on insulin-stimulated glycogen synthesis and gluconeogenesis was investigated in hSkMCs and murine hepatocytes, respectively. RESULTS: Circulating WISP1 levels were higher in obese men (independent of diabetes status) than in normal-weight men (mean [95% CI]: 70.8 [55.2, 86.4] ng/l vs 42.6 [28.5, 56.6] ng/l, respectively; p < 0.05). VAT WISP1 expression was 1.9-fold higher in obese men vs normal-weight men (p < 0.05). Circulating WISP1 levels were positively associated with blood glucose in the OGTT and circulating haem oxygenase-1 and negatively associated with adiponectin levels. In hSkMCs and AML12 hepatocytes, recombinant WISP1 impaired insulin action by inhibiting phosphorylation of insulin receptor, Akt and its substrates glycogen synthase kinase 3ß, FOXO1 and p70S6 kinase, and inhibiting insulin-stimulated glycogen synthesis and suppression of gluconeogenic genes. CONCLUSIONS/INTERPRETATION: Circulating WISP1 levels and WISP1 expression in VAT are increased in obesity independent of glycaemic status. Furthermore, WISP1 impaired insulin signalling in muscle and liver cells.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Hepatocytes/metabolism , Insulin Resistance/physiology , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Blood Glucose/metabolism , CCN Intercellular Signaling Proteins/blood , Enzyme-Linked Immunosorbent Assay , Humans , Intra-Abdominal Fat/metabolism , Mice , Phosphorylation , Proto-Oncogene Proteins/blood , Receptor, Insulin/metabolism , Signal Transduction
2.
J Cell Commun Signal ; 12(3): 539-548, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29129025

ABSTRACT

WNT1 inducible signaling pathway protein 1 (WISP-1/CCN4) is a novel adipokine, which is upregulated in obesity, and induces a pro-inflammatory response in macrophages in-vitro. Preclinical observations suggested WISP-1/CCN4 as a potential candidate for novel obesity therapy targeting adipose tissue inflammation. Whether circulating levels of WISP-1/CCN4 in humans are altered in obesity and/or type 2 diabetes (T2DM) and in the postprandial state, however, is unknown. This study assessed circulating WISP-1/CCN4 levels in a) paired liquid meal tests and hyperinsulinemic- euglycemic clamps (cohort I, n = 26), b) healthy individuals (cohort II, n = 207) and c) individuals with different stages of obesity and glucose tolerance (cohort III, n = 253). Circulating plasma and serum WISP-1/CCN4 concentrations were measured using a commercially available ELISA. WISP-1/CCN4 levels were not influenced by changes in insulin and/or glucose during the tests. In healthy individuals, WISP-1/CCN4 was detectable in 13% of plasma samples with the intraclass correlation coefficient of 0.93 (95% CI: 0.84-0.96) and in 58.1% of the serum samples in cohort III. Circulating WISP-1/CCN4 positively correlated with body mass index, body fat percentage, leptin and triglyceride levels, hip circumference and fatty liver index. No differences in WISP-1/CCN4 levels between individuals with normal glucose tolerance, impaired glucose tolerance and T2DM were found. The circulating concentrations of WISP-1/CCN4 showed no acute regulation in postprandial state and correlated with anthropometrical obesity markers and lipid profiles. In healthy individuals, WISP-1/CCN4 levels are more often below the detection limit. Thus, serum WISP-1/CCN4 levels may be used as a suitable biomarker of obesity.

3.
Minerva Endocrinol ; 41(4): 456-68, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27007919

ABSTRACT

BACKGROUND: Acarbose, an alpha-glucosidase inhibitor, unexpectedly reduced the incidence of hypertension and cardiovascular endpoints in the STOP-NIDDM study. Based on the growing evidence of a link between vasoregulatory peptides and metabolic traits, we hypothesized that changes of the Glycemic Index by acarbose may modulate vasoregulatory peptide levels via regulation of postprandial metabolism. METHODS: Subjects with type 2 diabetes and with metabolic syndrome were treated with acarbose (12 weeks, 300mg/d) in a double-blind, placebo-controlled, cross-over intervention. Changes in fasting and postprandial levels of midregional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-endothelin-1 (CT-proET-1) and midregional pro-adrenomedullin (MR-proADM), WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as well as fasting and postprandial glucose/insulin levels in the liquid meal test were assessed. RESULTS: Acarbose strongly decreased postprandial insulin concentrations in subjects with metabolic syndrome (P=0.004), and postprandial glucose excursions in both groups. Postprandial MR-proANP and CT-proET-1 levels increased after acarbose treatment (P<0.01 and P<0.05, respectively) in subjects with metabolic syndrome only. No effect of acarbose treatment on MR-prADM was observed in both groups. All three peptides were correlated with each over, but neither with insulin sensitivity in euglycemic clamps, nor with adiponectin levels. WISP1 decreased after acarbose treatment in subjects with metabolic syndrome. CONCLUSIONS: Plasma MR- proANP and CT-proET-1 concentrations, but not MR-prADM concentrations, were affected by treatment with acarbose over 12 weeks. Our findings provide new possible mechanisms of acarbose action in diabetes and metabolic syndrome.


Subject(s)
Acarbose/therapeutic use , Cardiotonic Agents/therapeutic use , Extracellular Matrix Proteins/blood , Vasoactive Intestinal Peptide/blood , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Double-Blind Method , Female , Humans , Insulin/blood , Male , Metabolic Syndrome/blood , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...