Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 27(7): 076005, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25640529

ABSTRACT

We have used dc-magnetization and ac-susceptibility to investigate the superspin dynamics in 9 nm average size Zn(0.5)Ni(0.5)Fe(2)O(4) magnetic particles at temperatures (T) between 3 and 300 K. Dc-magnetization M versus T data collected in a H = 50 Oe magnetic field using a field-cooled-zero-field-cooled protocol indicate that the onset of irreversibility occurs in the vicinity of 190 K. This is confirmed by M versus H|(T) hysteresis loops, as well as by frequency- and temperature-resolved ac-susceptibility data. We demonstrate that this magnetic event is not due to the blocking of individual superspins, but can be unequivocally ascribed to their collective freezing in a spin-glass-like fashion. Indeed, the relative variation (per frequency decade) of the in-phase susceptibility peak temperature is ∼0.032, critical dynamics analysis of this peak shift yields an exponent zν = 10.0 and a zero-field freezing temperature T(g) = 190 K, and, in a magnetic field, Tg(H) is excellently described by the de Almeida-Thouless line δT(g) = 1 - T(g)(H)/T(g) ∝ H(2/3). In addition, out-of-phase susceptibility versus temperature datasets collected at different frequencies collapse on a universal dynamic scaling curve. Finally, memory imprinting during a stop-and-wait magnetization protocol confirms the collective freezing nature of the state below 190 K.

2.
Magn Reson Imaging ; 33(6): 829-39, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25490517

ABSTRACT

PURPOSE: The purpose of this work is to develop a method for accurately quantifying effective magnetic moments of spherical-like small objects from magnetic resonance imaging (MRI). A standard 3D gradient echo sequence with only one echo time is intended for our approach to measure the effective magnetic moment of a given object of interest. METHODS: Our method sums over complex MR signals around the object and equates those sums to equations derived from the magnetostatic theory. With those equations, our method is able to determine the center of the object with subpixel precision. By rewriting those equations, the effective magnetic moment of the object becomes the only unknown to be solved. Each quantified effective magnetic moment has an uncertainty that is derived from the error propagation method. If the volume of the object can be measured from spin echo images, the susceptibility difference between the object and its surrounding can be further quantified from the effective magnetic moment. Numerical simulations, a variety of glass beads in phantom studies with different MR imaging parameters from a 1.5T machine, and measurements from a SQUID (superconducting quantum interference device) based magnetometer have been conducted to test the robustness of our method. RESULTS: Quantified effective magnetic moments and susceptibility differences from different imaging parameters and methods all agree with each other within two standard deviations of estimated uncertainties. CONCLUSION: An MRI method is developed to accurately quantify the effective magnetic moment of a given small object of interest. Most results are accurate within 10% of true values, and roughly half of the total results are accurate within 5% of true values using very reasonable imaging parameters. Our method is minimally affected by the partial volume, dephasing, and phase aliasing effects. Our next goal is to apply this method to in vivo studies.


Subject(s)
Magnetic Resonance Imaging/statistics & numerical data , Algorithms , Computer Simulation , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Magnetics , Phantoms, Imaging , Reproducibility of Results , Uncertainty
3.
Nanotechnology ; 20(44): 445705, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19809109

ABSTRACT

We investigated the dynamic behavior of ultrafine NiFe2O4 nanoparticles (average size D = 3.5 nm) that exhibit anomalous low temperature magnetic properties such as low saturation magnetization and high-field irreversibility in both M(H) and ZFC-FC processes. Besides the expected blocking of the superspin, observed at T1 approximately 45 K, the system undergoes a magnetic transition at T2 approximately 6 K. For the latter, frequency- and temperature-resolved dynamic susceptibility data reveal characteristics that are unambiguously related to collective spin freezing: the relative variation (per frequency decade) of the in-phase susceptibility peak temperature is approximately 0.025, critical dynamics analysis yields an exponent znu = 9.6 and a zero-field freezing temperature T(F) = 5.8 K, and, in a magnetic field, T(F)(H) is excellently described by the de Almeida-Thouless line delta T(F) = 1 - T(F)(H)/T(F) alpha H(2/3). Moreover, out-of-phase susceptibility versus temperature datasets collected at different frequencies collapse on a universal dynamic scaling curve. All these observations indicate the existence of a spin-glass-like surface layer that surrounds the superparamagnetic core and undergoes a transition to a frozen state upon cooling below 5.8 K.


Subject(s)
Ferric Compounds/chemistry , Magnetics , Metal Nanoparticles/chemistry , Nickel/chemistry , Algorithms , Anisotropy , Chlorides , Particle Size , Surface Properties , Temperature , Transition Temperature , X-Ray Diffraction
4.
ACS Nano ; 3(5): 1129-38, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19358564

ABSTRACT

Nanocrystals of thermodynamically stable alpha-MnAs (hexagonal NiAs-type) and metastable beta-MnAs (orthorhombic MnP-type) have been synthesized by the reaction of triphenylarsine oxide (Ph(3)AsO) and dimanganesedecacarbonyl (Mn(2)CO(10)) at temperatures ranging from 250 to 330 degrees C in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Morphologically, both alpha- and beta-MnAs nanoparticles adopt a core-shell type structure with a crystalline core and low-contrast noncrystalline shell. In contrast to prior studies on MnAs particles, disks, and films, the present bottom-up synthesis yields discrete, dispersible MnAs nanoparticles without a structural support. Even in the absence of epitaxial strain, the lattice parameters of the nanocrystals are decreased relative to bulk MnAs, resulting in a volume decrease of 0.35% in alpha-MnAs and 0.38% in beta-MnAs nanoparticles. In contrast to bulk MnAs, where the ferromagnetic phase transition upon warming through 313-317 K is concomitant with a structure change from ferromagnetic alpha- to paramagnetic beta-MnAs, powder X-ray diffraction studies suggest there is no conversion of alpha-MnAs to beta over the temperature range 298-343 K. Moreover, magnetic measurements suggest that both alpha- and beta-MnAs are ferromagnetic with T(C) approximately 315 K. Partial phase transformation of beta-MnAs nanoparticles into thermodynamically stable alpha-MnAs occurs slowly over time (i.e., months) at room temperature. However, there is no associated change in magnetization, suggesting the ferromagnetism observed in beta-MnAs is intrinsic and cannot be attributed to alpha-MnAs impurities.


Subject(s)
Arsenic/chemistry , Crystallization/methods , Manganese/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Colloids/chemistry , Macromolecular Substances/chemistry , Magnetics , Molecular Conformation , Particle Size , Phase Transition , Solutions , Surface Properties
5.
J Phys Condens Matter ; 21(32): 325401, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-21693965

ABSTRACT

We have used laboratory and synchrotron x-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline RbH(2)PO(4) upon heating within the 30-250 °C temperature interval. Our data show no evidence of the previously reported onset of partial polymerization at T = 96 °C (Park et al 2001 J. Phys.: Condens. Matter 13 9411) which was proposed as an explanation for the high-temperature proton conductivity enhancement in phosphate-based solid acids. Instead, we found that a tetragonal [Formula: see text] monoclinic polymorphic transition initiates at T≈90 °C. The transition is complete at T≈130 °C, and the new monoclinic RbH(2)PO(4) polymorph is stable upon further heating to T = 200 °C. Moreover, its crystal structure is isomorphic to that of monoclinic CsH(2)PO(4). This remarkable similarity suggests that the microscopic structures and dynamics responsible for the high-temperature superprotonic behavior of RbH(2)PO(4) could be the same as those of its Cs-based counterpart.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051502, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19113131

ABSTRACT

We report an experimental investigation of time dependent anisotropic light scattering by an aqueous suspension of tetramethyl ammonium hydroxide coated Fe3O4 nanoparticles (approximately 6 nm) under the ON-OFF transient of an external dc magnetic field. The study employs the synchronized recording and measurement of the two magnetic-field-induced light-scattering patterns produced by two identical orthogonal He-Ne laser beams passing through the ferrofluid sample and propagating parallel and perpendicular to the applied field, respectively. From these patterns, we extract the time dependence of the induced optical anisotropy, which provides a measure of the characteristic time scale and kinematic response for field-induced structure formation in the sample. We propose that the time evolution of the scattering patterns, which is very fast at short times and significantly slower at long times, can be explained using a model based on a two-stage chain formation and coarsening processes.

7.
MAGMA ; 21(5): 345-56, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18758838

ABSTRACT

OBJECTIVE: This work compares the measured R*2 of magnetic nanoparticles to their corresponding theoretical values in both gel phantoms and dynamic water flows on the basis of the static dephasing theory. MATERIALS AND METHODS: The magnetic moment of a nanoparticle solution was measured by a magnetometer. The R*2 of the nanoparticle solution doped in a gel phantom was measured at both 1.5 and 4.7 T. A total of 12 non-steady state flow experiments with different nanoparticle concentrations were conducted. The R*2 at each time point was measured. RESULTS: The theoretical R*2 on the basis of the magnetization of nanoparticles measured by the magnetometer agree within 11% of MRI measurements in the gel phantom study, a significant improvement from previous work. In dynamic flow experiments, the total R*2 calculated from each experiment agrees within 15% of the theoretical R*2 for 10 of the 12 cases. The MRI phase values are also reasonably predicted by the theory. The diffusion effect does not seem to contribute significantly. CONCLUSIONS: Under certain situations with known R*2, the static dephasing theory can be used to quantify the susceptibility or concentration of nanoparticles in either a static or dynamic flow environment at a given time point. This approach may be applied to in vivo studies.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetics , Metal Nanoparticles/analysis , Contrast Media/analysis , Diffusion , Ferric Compounds , Gels , Humans , Magnetic Resonance Imaging/statistics & numerical data , Phantoms, Imaging , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...