Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 67: 116764, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35635928

ABSTRACT

It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.


Subject(s)
Apoptosis , Tumor Suppressor Protein p53 , DNA Damage , DNA Repair , Tumor Suppressor Protein p53/metabolism
2.
Life (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685458

ABSTRACT

RNA synthesis inhibitors and protein synthesis inhibitors are useful for investigating whether biological events with unknown mechanisms require transcription or translation; however, the dependence of RNA synthesis has been difficult to verify because many RNA synthesis inhibitors cause adverse events that trigger a p53 response. In this study, we screened a library containing 9600 core compounds and obtained STK160830 that shows anti-apoptotic effects in irradiated wild-type-p53-bearing human T-cell leukemia MOLT-4 cells and murine thymocytes. In many of the p53-impaired cells and p53-knockdown cells tested, STK160830 did not show a remarkable anti-apoptotic effect, suggesting that the anti-apoptotic activity is p53-dependent. In the expression analysis of p53, p53-target gene products, and reference proteins by immunoblotting, STK160830 down-regulated the expression of many of the proteins examined, and the downregulation correlated strongly with its inhibitory effect on cell death. mRNA expression analyses by qPCR and nascent RNA capture kit revealed that STK160830 showed a decreased mRNA expression, which was similar to that induced by the RNA synthesis inhibitor actinomycin D but differed to some extent. Furthermore, unlike other RNA synthesis inhibitors such as actinomycin D, p53 accumulation by STK160830 alone was negligible, and a DNA melting-curve analysis showed very weak DNA-intercalating activity, indicating that STK160830 is a useful inhibitor for RNA synthesis without triggering p53-mediated damage responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...