Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(35): 7297-7308, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37638599

ABSTRACT

We report quantum chemical studies on possible molecular devices working based on electric field-induced intramolecular charge transfer (EFIMCT). In the case of donor-acceptor (DA)-type molecular systems, intramolecular charge transfer (IMCT) can be induced by applying the external electric field to molecular systems along the charge transport direction, providing a possible switching mechanism which does not depend upon the electron-phonon coupling effect and is different from the negative differential resistance mechanism observed in the well-known NO2-substituted phenylene ethynylene oligomers. When the EFIMCT proceeds, the molecular systems have strong static electron correlation effects, where the standard nonequilibrium Green's function-density functional theory (DFT) approach cannot be applied to the molecular junction. As a first step toward practical switching devices, we do quantum chemical studies on the EFIMCT in such molecular systems as an isolated molecule, instead of using the electrode-junction-electrode open quantum system model. A prototype molecule P1 is designed as a tentative candidate molecule where the EFIMCT can proceed. The complete active space self-consistent field (CASSCF) molecular orbital calculations on P1 indicate that the EFIMCT can proceed at the external electric field intensity of 0.003 au, corresponding to about 2.25 V bias voltage. This calculated result strongly suggests that the development of this type of switching devices working at practically low bias voltage is feasible if the molecular system is properly designed. Broken symmetry unrestricted Hartree-Fock and spin-polarized Kohn-Sham DFT calculations also qualitatively reproduce the CASSCF results on P1, to some extent, indicating that these approaches can be employed for rough estimations on the EFIMCT such as the first screening of a large quantity of candidate molecules for this type of molecular devices. The possibility of molecular memory devices based on the EFIMCT is also discussed by analyzing the ground and excited potential energy surface model. Remaining challenges to develop practical molecular devices are discussed.

2.
J Phys Chem A ; 121(40): 7797-7806, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28976193

ABSTRACT

We report the quantum chemical studies on the neutral and radical anion forms of an electron-accepting overcrowded ethylene (OCE1) featuring a highly polarizable skeleton based on the density functional theory (DFT) approach using the M06-2X hybrid functional. Calculated results indicate that OCE1 (bis{4H,8H-4-(dicyanomethylene)benzo[1,2-c:4,5-c']bis[1,2,5]thiadiazol-8-ylidene}) shows conformational behaviors and energetics similar to those of bianthrone (OCE2), a typical thermochromic overcrowded ethylene. Neutral OCE1 and its radical anion have antifolded (afOCE1) and twisted (tOCE1) isomers on their potential energy surfaces. The calculated isomerization barrier heights of OCE1 and its radical anion are considerably low, indicating that its conformation is susceptible to interactions with surrounding molecules. While two afOCE1 molecules can form a simple π-stacked dimer, tOCE1 tends to be converted to afOCE1 when the two tOCE1 molecules come close together, indicating the instability of tOCE1 in the homogeneous OCE1 solid state. The thermochromic behavior difference between OCE1 and OCE2 in solution is closely associated with the considerably small energy difference between the afOCE1 and the tOCE1 as compared with OCE2. The properties of OCE1 are also compared with other typical electron-accepting overcrowded ethylenes in terms of electronic structure, energetics, and conformational behaviors.

3.
Chem Soc Rev ; 44(4): 970-87, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25306971

ABSTRACT

In this review, we describe recent progress made in the study of nanoparticles characterized by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Basic principles of STM measurements and single-electron tunneling phenomena through a single NP are summarized. We highlight the results of electrical and photonic properties on NPs studied by STM and STS. Because nanoparticles are single-digit nanometre in diameter, a single-electron transport on individual nanoparticles such as Coulomb blockade and resonant tunneling through discrete energy levels are investigated. Photon-emission from NPs is also introduced based on STM measurements. Novel single-nanoparticle functions such as stochastic blinking and one-write erasing behaviours are presented. This review provides an overview of nanoparticle characterization methods based on STM and STS that include the detailed understanding of the electrical and photonics properties of nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...