Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 4(2): 223-231, 2020 02.
Article in English | MEDLINE | ID: mdl-32051578

ABSTRACT

The use of nanophotonics to rapidly and precisely reconfigure light beams for the optical stimulation of neurons in vivo has remained elusive. Here we report the design and fabrication of an implantable silicon-based probe that can switch and route multiple optical beams to stimulate identified sets of neurons across cortical layers and simultaneously record the produced spike patterns. Each switch in the device consists of a silicon nitride waveguide structure that can be rapidly (<20 µs) reconfigured by electrically tuning the phase of light. By using an eight-beam probe, we show in anaesthetized mice that small groups of single neurons can be independently stimulated to produce multineuron spike patterns at sub-millisecond precision. We also show that a probe integrating co-fabricated electrical recording sites can simultaneously optically stimulate and electrically measure deep-brain neural activity. The technology is scalable, and it allows for beam focusing and steering and for structured illumination via beam shaping. The high-bandwidth optical-stimulation capacity of the device might facilitate the probing of the spatiotemporal neural codes underlying behaviour.


Subject(s)
Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Hippocampus/physiology , Nanotechnology , Neurons/physiology , Visual Cortex/physiology , Action Potentials , Animals , Equipment Design , Female , Mice, Transgenic , Signal Processing, Computer-Assisted , Silicon
2.
Opt Express ; 27(16): 22352-22362, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510530

ABSTRACT

Ultra-compact miniaturized optical components for microendoscopic tools and miniaturized microscopes are required for minimally invasive imaging. Current microendoscopic technologies used for deep tissue imaging procedures are limited to a large diameter and/or low resolution due to manufacturing restrictions. We demonstrate a platform for miniaturization of an optical imaging system for microendoscopic applications with a resolution of 1 µm. We designed our probe using cascaded micro-lenses and waveguides (lensguide) to achieve a probe as small as 100 µm x 100 µm with a field of view of 60 µm in diameter. We demonstrate wide-field microscopy based on our polymeric probe fabricated using photolithography and a two-photon polymerization process.

3.
Sci Rep ; 8(1): 10756, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018316

ABSTRACT

Ultra-compact micro-optical elements for endoscopic instruments and miniaturized microscopes allow for non-invasive and non-destructive examination of microstructures and tissues. With sub-cellular level resolution such instruments could provide immediate diagnosis that is virtually consistent with a histologic diagnosis enabling for example to differentiate the boundaries between malignant and benign tissue. Such instruments are now being developed at a rapid rate; however, current manufacturing technologies limit the instruments to very large sizes, well beyond the sub-mm sizes required in order to ensure minimal tissue damage. We show here a platform based on planar microfabrication and soft lithography that overcomes the limitation of current optical elements enabling single cell resolution. We show the ability to resolve lithographic features that are as small as 2 µm using probes with a cross section that is only 100 microns in size. We also show the ability to image individual activated neural cells in brain slices via our fabricated probe.

4.
Article in English | MEDLINE | ID: mdl-25474787

ABSTRACT

Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 µm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.


Subject(s)
High-Energy Shock Waves , Polymers/chemistry , Transducers , Ultrasonography/instrumentation , Equipment Design
5.
Opt Express ; 22(5): 5904-12, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663928

ABSTRACT

Optical resonators are used in a variety of applications ranging from sensors to lasers and signal routing in high volume communication networks. Achieving a high quality (Q) factor is necessary for higher sensitivity in sensing applications and for narrow linewidth light emission in most lasing applications. In this work, we propose a new approach to achieve a very high Q-factor in polymeric Fabry-Perot resonators by conquering light diffraction inside the optical cavity. This can be achieved by inducing a refractive index feature inside the optical cavity that simply creates a waveguide between the two mirrors. This approach eliminates diffraction loss from the cavity and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this claim, a device has been fabricated consisting of two dielectric Bragg reflectors with a 100 µm layer of photosensitive polymer between them. The refractive index of this polymer can be modified utilizing standard photo-lithography processes. The measured finesse of the fabricated device was 692 and the Q-factor was 55000.

6.
Article in English | MEDLINE | ID: mdl-24658733

ABSTRACT

The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.


Subject(s)
Electronics/instrumentation , Optical Devices , Transducers , Ultrasonography/instrumentation , Electric Capacitance , Equipment Design , Equipment Failure Analysis , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...