Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(3): e0174765, 2017.
Article in English | MEDLINE | ID: mdl-28362810

ABSTRACT

Shifts in healthy human microbial communities have now been linked to disease in numerous body sites. Noninvasive swabbing remains the sampling technique of choice in most locations; however, it is not well known if this method samples the entire community, or only those members that are easily removed from the surface. We sought to compare the communities found via swabbing and biopsied tissue in true vocal folds, a location that is difficult to sample without causing potential damage and impairment to tissue function. A secondary aim of this study was to determine if swab sampling of the false vocal folds could be used as proxy for true vocal folds. True and false vocal fold mucosal samples (swabbed and biopsied) were collected from six pigs and used for 454 pyrosequencing of the V3-V5 region of the 16S rRNA gene. Most of the alpha and beta measures of diversity were found to be significantly similar between swabbed and biopsied tissue samples. Similarly, the communities found in true and false vocal folds did not differ considerably. These results suggest that samples taken via swabs are sufficient to assess the community, and that samples taken from the false vocal folds may be used as proxies for the true vocal folds. Assessment of these techniques opens an avenue to less traumatic means to explore the role microbes play in the development of diseases of the vocal folds, and perhaps the rest of the respiratory tract.


Subject(s)
Larynx/microbiology , Vocal Cords/microbiology , Animals , Mucous Membrane/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Swine
2.
Protein J ; 33(2): 184-98, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24590670

ABSTRACT

Aminoacyl-tRNA synthetases (AARSs) are an important family of enzymes that catalyze tRNA aminoacylation reaction (Ibba and Soll in Annu Rev Biochem 2000, 69:617-650) [1]. AARSs are grouped into two broad classes (class I and II) based on sequence/structural homology and mode of their interactions with the tRNA molecule (Ibba and Soll in Annu Rev Biochem 2000, 69:617-650) [1]. As protein dynamics play an important role in enzyme function, we explored the intrinsic dynamics of these enzymes using normal mode analysis and investigated if the two classes and six subclasses (Ia-c and IIa-c) of AARSs exhibit any distinct patterns of motion. The present study found that the intrinsic dynamics-based classification of these enzymes is similar to that obtained based on sequence/structural homology for most enzymes. However, the classification of seryl-tRNA synthetase was not straightforward; the internal mobility patterns of this enzyme are comparable to both IIa and IIb AARSs. This study revealed only a few general mobility patterns in these enzymes--(1) the insertion domain is generally engaged in anticorrelated motion with respect to the catalytic domain for both classes of AARSs and (2) anticodon binding domain dynamics are partly correlated and partly anticorrelated with respect to other domains for class I enzymes. In most of the class II AARSs, the anticodon binding domain is predominately engaged in anticorrelated motion with respect to the catalytic domain and correlated to the insertion domain. This study supports the notion that dynamic-based classification could be useful for functional classification of proteins.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Escherichia coli/enzymology , Molecular Dynamics Simulation , Pyrococcus horikoshii/enzymology , Thermus thermophilus/enzymology , Amino Acyl-tRNA Synthetases/classification , Escherichia coli/chemistry , Protein Conformation , Pyrococcus horikoshii/chemistry , Thermus thermophilus/chemistry
3.
Biochemistry ; 52(25): 4399-412, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23731272

ABSTRACT

Aminoacyl-tRNA synthetases are multidomain enzymes that catalyze covalent attachment of amino acids to their cognate tRNA. Cross-talk between functional domains is a prerequisite for this process. In this study, we investigate the molecular mechanism of site-to-site communication in Escherichia coli prolyl-tRNA synthetase (Ec ProRS). Earlier studies have demonstrated that evolutionarily conserved and/or co-evolved residues that are engaged in correlated motion are critical for the propagation of functional conformational changes from one site to another in modular proteins. Here, molecular simulation and bioinformatics-based analysis were performed to identify dynamically coupled and evolutionarily constrained residues that form contiguous pathways of residue-residue interactions between the aminoacylation and editing domains of Ec ProRS. The results of this study suggest that multiple pathways exist between these two domains to maintain the dynamic coupling essential for enzyme function. Moreover, residues in these interaction networks are generally highly conserved. Site-directed changes of on-pathway residues have a significant impact on enzyme function and dynamics, suggesting that any perturbation along these pathways disrupts the native residue-residue interactions that are required for effective communication between the two functional domains. Free energy analysis revealed that communication between residues within a pathway and cross-talk between pathways are important for coordinating functions of different domains of Ec ProRS for efficient catalysis.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Catalytic Domain , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Signal Transduction/physiology , Amino Acyl-tRNA Synthetases/physiology , Escherichia coli Proteins/physiology , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...