Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328101

ABSTRACT

The electroosmotic-driven transport of unravelled proteins across nanopores is an important biological process that is now under investigation for the rapid analysis and sequencing of proteins. For this approach to work, however, it is crucial that the polymer is threaded in single file. Here we found that, contrary to the electrophoretic transport of charged polymers such as DNA, during polypeptide translocation blob-like structures typically form inside nanopores. Comparisons between different nanopore sizes, shapes and surface chemistries showed that under electroosmotic-dominated regimes single-file transport of polypeptides can be achieved using nanopores that simultaneously have an entry and an internal diameter that is smaller than the persistence length of the polymer, have a uniform non-sticky ( i . e . non-aromatic) nanopore inner surface, and using moderate translocation velocities.

2.
Nat Biotechnol ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723268

ABSTRACT

Nanopores have recently been used to identify and fingerprint proteins. However, because proteins, unlike DNA, do not have a uniform charge, the electrophoretic force cannot in general be used to translocate or linearize them. Here we show that the introduction of sets of charges in the lumen of the CytK nanopore spaced by ~1 nm creates an electroosmotic flow that induces the unidirectional transport of unstructured natural polypeptides against a strong electrophoretic force. Molecular dynamics simulations indicate that this electroosmotic-dominated force has a strength of ~20 pN at -100 mV, which is similar to the electric force on single-stranded DNA. Unfolded polypeptides produce current signatures as they traverse the nanopore, which may be used to identify proteins. This approach can be used to translocate and stretch proteins for enzymatic and non-enzymatic protein identification and sequencing.

3.
J Am Chem Soc ; 145(33): 18355-18365, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37579582

ABSTRACT

Mass spectrometry (MS) is widely used in proteomic analysis but cannot differentiate between molecules with the same mass-to-charge ratio. Nanopore technology might provide an alternative method for the rapid and cost-effective analysis and sequencing of proteins. In this study, we demonstrate that nanopore currents can distinguish between diastereomeric and enantiomeric differences in l- and d-peptides, not observed by conventional MS analysis, down to individual d-amino acids in small opioid peptides. Molecular dynamics simulations suggest that similar to chiral chromatography the resolution likely arises from multiple chiral interactions during peptide transport across the nanopore. Additionally, we used nanopore recordings to rapidly assess 4- and 11-amino acid ring formation in lanthipeptides, a process used in the synthesis of pharmaceutical peptides. The cyclization step requires distinguishing between constitutional isomers, which have identical MS signals and typically involve numerous tedious experiments to confirm. Hence, nanopore technology offers new possibilities for the rapid and cost-effective analysis of peptides, including those that cannot be easily differentiated by mass spectrometry.


Subject(s)
Nanopores , Proteomics , Peptides/chemistry , Amino Acids/chemistry , Mass Spectrometry
4.
ACS Omega ; 7(30): 26040-26046, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936408

ABSTRACT

Single-molecule nanopore electrophysiology is an emerging technique for the detection of analytes in aqueous solutions with high sensitivity. These detectors have proven applicable for the enzyme-assisted sequencing of oligonucleotides. There has recently been an increased interest in the use of nanopores for the fingerprinting of peptides and proteins, referred to as single-molecule nanopore spectrometry. However, the analysis of the resulting electrophysiology traces remains complicated due to the fast unassisted translocation of such analytes, usually in the order of micro- to milliseconds, and the small ion current signal produced (in the picoampere range). Here, we present the application of a generalized normal distribution function (gNDF) for the characterization of short-lived ion current signals (blockades). We show that the gNDF can be used to determine if the observed blockades have adequate time to reach their maximum current plateau while also providing a description of each blockade based on the open pore current (I O), the difference caused by the pore blockade (ΔI B), the position in time (µ), the standard deviation (σ), and a shape parameter (ß), leaving only the noise component. In addition, this method allows the estimation of an ideal range of low-pass filter frequencies that contains maximum information with minimal noise. In summary, we show a parameter-free and generalized method for the analysis of short-lived ion current blockades, which facilitates single-molecule nanopore spectrometry with minimal user bias.

5.
Nano Lett ; 22(13): 5357-5364, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35766994

ABSTRACT

Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.


Subject(s)
Nanopores , Glycosylation , Nanotechnology , Peptides/chemistry , Proteins , Proteomics
6.
ACS Nano ; 16(5): 7258-7268, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35302739

ABSTRACT

Biological nanopores are emerging as sensitive single-molecule sensors for proteins and peptides. The heterogeneous charge of a polypeptide chain, however, can complicate or prevent the capture and translocation of peptides and unfolded proteins across nanopores. Here, we show that two ß-barrel nanopores, aerolysin and cytotoxin K, cannot efficiently detect proteinogenic peptides from a trypsinated protein under a wide range of conditions. However, the introduction of an acidic-aromatic sensing region in the ß-barrel dramatically increased the dwell time and the discrimination of peptides in the nanopore at acidic pH. Surprisingly, despite the fact that the two ß-barrel nanopores have a similar diameter and an acidic-aromatic construction, their capture mechanisms differ. The electro-osmotic flow played a dominant role for aerolysin, while the electrophoretic force dominated for cytotoxin K. Nonetheless, both ß-barrel nanopores allowed the detection of mixtures of trypsinated peptides, with aerolysin nanopores showing a better resolution for larger peptides and cytotoxin K showing a better resolution for shorter peptides. Therefore, this work provides a generic strategy for modifying nanopores for peptide detection that will be most likely be applicable to other nanopore-forming toxins.


Subject(s)
Nanopores , Peptides/chemistry , Proteins/chemistry , Hydrogen-Ion Concentration , Cytotoxins
SELECTION OF CITATIONS
SEARCH DETAIL
...