Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 69: 22-27, 2020 06.
Article in English | MEDLINE | ID: mdl-32061661

ABSTRACT

PURPOSE: This study attempted to improve visualization of the pelvic nervous system using the high-intensity reduction (HIRE)-nerve-SHeath signal increased with INKed rest-tissue RARE Imaging (SHINKEI) technique that involves subtracting signals of 3D heavily T2W images from SHINKEI images. We identified the optimum TE value for 3D heavily T2W images and assessed the usefulness of the HIRE-SHINKEI technique. MATERIALS AND METHODS: Coronal lumbosacral plexus images were acquired from six healthy volunteers at 3 T. We optimized the TE of the 3D heavily T2-weighted (T2W) images in HIRE-SHINKEI and compared HIRE-SHINKEI images with conventional SHINKEI images with respect to nerve depiction, and vein, bladder, and cerebrospinal fluid (CSF) signal suppression using a 5-point scale. RESULTS: In 3D heavily T2W images optimized by HIRE-SHINKEI technique, the signal corresponding to nerves became significantly lower at TE = 400 ms (p < 0.0005), while that of veins occurred at TE = 400 ms and 600 ms (p < 0.05). The suppression of bladder signals was significant at TE = 400, 600, and 800 ms (p < 0.05); however, there was no difference in signal inhibition from CSF at all TEs tested. Based on these results, an optimal TE of 600 ms was identified for 3D heavily T2W images; these images corresponded to the minimal loss of nerve signal and simultaneous maximum subtraction of signals from the bladder, vein, and CSF with dissimilar T2 values. Compared with SHINKEI images, the optimized HIRE-SHINKEI images selectively delineated nerves in greater detail, and along with significant signal suppression of the bladder (p < 0.0001) and veins (p < 0.05). CONCLUSION: HIRE-SHINKEI can be used to better visualize the lumbosacral plexus with higher signal suppression of other pelvic structures. Such detailed Magnetic resonance neurography and selective depiction of nerves are useful for the diagnosis of peripheral nerve disorders.


Subject(s)
Imaging, Three-Dimensional/methods , Lumbosacral Plexus/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , Peripheral Nervous System/diagnostic imaging
2.
Br J Radiol ; 92(1094): 20180489, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30407840

ABSTRACT

OBJECTIVE:: To compare single-shot turbo spin-echo (TSE) diffusion-weighted whole-body imaging with background suppression (DWIBS) and echo-planar imaging (EPI) DWIBS to determine the feasibility of direct-coronal TSE-DWIBS. METHODS:: All measurements were performed using a 3.0 T MRI scanner. In the phantom study, we compared the contrast ratios (CRs) of tumor-mimicking phantom (tumor) to muscle-mimicking phantom (muscle) and water to muscle and the signal-to-noise ratio (SNR) between TSE-DWIBS and EPI-DWIBS. In the volunteer study, 10 healthy volunteers were whole-body scanned with direct-coronal TSE-DWIBS, direct-coronal EPI-DWIBS (corEPI-DWIBS), and transverse EPI-DWIBS (traEPI-DWIBS). Two radiologists assessed the image distortion, uniformity of fat suppression, overall artifacts, and overall image quality in maximum intensity projection (MIP) images from each DWIBS image using a 5-point scale. RESULTS:: In the phantom study, the CR of tumor to muscle was found to be lower for TSE-DWIBS (10.57 ± 0.45) than for EPI-DWIBS (15.38 ± 0.27), and the CR of water to muscle was higher for TSE-DWIBS (9.61 ± 0.66) than for EPI-DWIBS (2.52 ± 0.60). The volunteer study revealed good inter observer agreement between TSE-DWIBS and EPI-DWIBS with respect to image distortion, uniformity of fat suppression, overall artifacts, and overall image quality, with weighted Cohen's κ coefficients of 0.91, 0.74, 0.87, and 0.72, respectively. Qualitative analysis scores for image distortion, uniformity of fat suppression, overall artifacts, and overall image quality were significantly higher for TSE-DWIBS than for corEPI-DWIBS or traEPI-DWIBS (p < 0.05). CONCLUSION:: Direct-coronal TSE-DWIBS is robust against magnetic field inhomogeneity. High-quality images without distortion or fat suppression inhomogeneity were obtained. ADVANCES IN KNOWLEDGE:: Many studies on DWIBS have been previously reported; however, these studies used EPI read-out. To the best of our knowledge, no studies using TSE read-out have been reported. In this study, we examined the feasibility of TSE-DWIBS with lesser artifacts than EPI-DWIBS.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Phantoms, Imaging , Whole Body Imaging/methods , Adult , Artifacts , Feasibility Studies , Healthy Volunteers , Humans , Male , Prospective Studies , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...