Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 114(4): 110408, 2022 07.
Article in English | MEDLINE | ID: mdl-35716823

ABSTRACT

Since 2013, the sorghum aphid (SA), Melanaphis sorghi (Theobald), has been a serious pest that hampers all types of sorghum production in the U.S. Known sorghum aphid resistance in sorghum is limited to a few genetic regions on SBI-06. In this study, a subset of the Sorghum Association Panel (SAP) was used along with some additional lines to identify genomic regions that confer sorghum aphid resistance. SAP lines were grown in the field and visually evaluated for SA resistance during the growing seasons of 2019 and 2020 in Tifton, GA. In 2020, the SAP accessions were also evaluated for SA resistance in the field using drone-based high throughput phenotyping (HTP). Flowering time was recorded in the field to confirm that our methods were sufficient for identifying known quantitative trait loci (QTL). This study combined phenotypic data from field-based visual ratings and reflectance data to identify genome-wide associated (GWAS) marker-trait associations (MTA) using genotyping-by-sequencing (GBS) data. Several MTAs were identified for SA-related traits across the genome, with a few common markers that were consistently identified on SBI-08 and SBI-10 for aphid count and plant damage, as well as loci for reflectance-based traits on SBI-02, SBI-03, and SBI-05. Candidate genes encoding leucine-rich repeats (LRR), Avr proteins, lipoxygenases (LOXs), calmodulins (CAM) dependent protein kinase, WRKY transcription factors, flavonoid biosynthesis genes, and 12-oxo-phytodienoic acid reductase were identified near SNPs that had significant associations with different SA traits. In this study, flowering time-related genes were also identified as a positive control for the methods. The total phenotypic variation explained by significant SNPs across SA-scored traits, reflectance data, and flowering time ranged from 6 to 61%, while the heritability value ranged from 4 to 69%. This study identified three new sources of resistant lines to sorghum aphid. These results supported the existing literature, and also revealed several new loci. Markers identified in this study will support marker-assisted breeding for sorghum aphid resistance.


Subject(s)
Aphids , Sorghum , Animals , Aphids/genetics , Edible Grain/genetics , Genome-Wide Association Study , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Sorghum/genetics
2.
Science ; 368(6495): 1103-1107, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32499438

ABSTRACT

The toxicity and environmental persistence of anthropogenic per- and poly-fluoroalkyl substances (PFAS) are of global concern. To address legacy PFAS concerns in the United States, industry developed numerous replacement PFAS that commonly are treated as confidential information. To investigate the distribution of PFAS in New Jersey, soils collected from across the state were subjected to nontargeted mass-spectral analyses. Ten chloroperfluoropolyether carboxylates were tentatively identified, with at least three congeners in all samples. Nine congeners are ≥(CF2)7 Distinct chemical formulas and structures, as well as geographic distribution, suggest airborne transport from an industrial source. Lighter congeners dispersed more widely than heavier congeners, with the most widely dispersed detected in an in-stock New Hampshire sample. Additional data were used to develop a legacy-PFAS fingerprint for historical PFAS sources in New Jersey.


Subject(s)
Carboxylic Acids/analysis , Conservation of Natural Resources , Ethers/analysis , Fluorocarbons/analysis , Soil/chemistry , Carboxylic Acids/toxicity , Ethers/toxicity , Fluorocarbons/toxicity , Mass Spectrometry , New Jersey
SELECTION OF CITATIONS
SEARCH DETAIL
...